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Preface to the first edition

Logic is one of the most ancient intellectual disciplines, and one of 
the most modern. Its beginnings go back to the 4th century bce. 
The only older disciplines are philosophy and mathematics, with 
both of which it has always been intimately connected. It was 
revolutionized around the turn of the 20th century, by the 
application of new mathematical techniques, and in the last 
half-century it has found radically new and important roles in 
computation and information processing. It is thus a subject 
that is central to much human thought and endeavour.

This book is an introduction to logic, as contemporary logicians 
now understand the subject. It does not attempt to be a textbook, 
however. There are numerous such books currently available. 
The point of this one is to explore the roots of logic, which sink 
deep into philosophy. Some formal logic will be explained along 
the way.

In each of the main chapters, I start by taking up some particular 
philosophical problem or logical puzzle. I then explain one 
approach to it. Often this is a fairly standard one; but in some of 
the areas there is no standard answer: logicians still disagree. In 
such cases, I have just chosen one that is interesting. Nearly all the 
approaches, whether standard or not, may be challenged. I finish 



each chapter with some problems for the approach that I have 
explained. Sometimes these problems are standard; sometimes 
they are not. Sometimes they may have easy answers; sometimes 
they may not. The aim is to challenge you to figure out what you 
make of the matter.

Modern logic is a highly mathematical subject. I have tried to 
write the material in such a way as to avoid nearly all mathematics. 
The most that is required is a little high-school algebra in 
Chapters 11–13. It is true that you will need the determination 
to master some symbolism that may be new to you; but this is a lot 
less than is required to have a basic grasp of any new language. 
And the perspicuity that the symbolism gives to difficult questions 
makes any trouble one may have in mastering it well worth it. 
One warning, though: reading a book on logic or philosophy is not 
like reading a novel. There will be times when you will have to 
read slowly and carefully. Sometimes you may have to stop and 
think about things; and you should be prepared to go back and 
reread a paragraph if necessary.

The appendix ‘A little history and some further reading’ at the 
end of the book is on the development of logic. In this, I have tried 
to put some of the issues that the book deals within a historical 
perspective, to show that logic is a living subject, which has always 
evolved, and which will continue to do so. The section also 
contains suggestions for further reading.

There are three other appendices. The first contains a glossary of 
terms and symbols. You may consult this if you forget the meaning 
of a word or symbol. The second contains a question relevant to 
each chapter, with which you can test your understanding of 
its main ideas. The third contains solutions to the problems. This 
appendix was not in the early printings of the first edition, but was 
added to later printings.



The book goes for breadth rather than depth. It would be easy to 
write a book on the topic of every single chapter—indeed, many 
such books have been written. And even so, there are very many 
important issues in logic that I have not even touched on here. But 
if you hang in there till the end of the book, you will have a pretty 
good idea of the fundamentals of modern logic, and why people 
find it worth thinking about the subject.



The first edition of this book appeared in 2000. In 2016, Oxford 
University Press approached me concerning the possibility of a 
second edition. My initial reaction was that there was not a lot of 
point in this. If this had been a book on, say, international 
relations, it would certainly have been out of date by now. But 
logic develops, generally speaking, at a more measured pace. The 
material in the first edition is as good now as it was then. And 
I don’t think I can do a much better job of covering it for the 
intended audience. Finally, the book has been selling well, now 
having been translated into eight other languages (if I have kept 
count correctly).

However, the Press pointed out to me that I had not used up all of 
my allotted 35,000 words in the first edition, and suggested that 
I might add a couple of new chapters. After pondering what 
I might add, this struck me as a very good idea. The first edition 
gives a sense of the basics of modern logic; but no more. Logic is a 
subject of great depth and beauty, and the material in the first 
edition gives no real sense of this. Two extra chapters would allow 
me to do so—at least to a limited extent: there is no hope of doing 
more than scratch the surface of the matter in a book of this 
nature. However, the new chapters do give the reader a ‘glimpse 
beyond’—or so I hope.

Preface to the second edition



So the present book contains the original chapters, pretty much 
as they were, with some occasional smoothing. The historical 
Chapter 14 has now become ‘A little history and some further 
reading’; and there are two new chapters—14 and 15—which deal, 
respectively, with Turing and the Halting Theorem, and Gödel and 
his Incompleteness Theorems. I have maintained the format of 
the first edition. The key points of each chapter are itemized at its 
end. The historical material, problems, and glossary, have been 
extended to cover the new material.

The new chapters are perforce harder than previous ones; but I have 
done my best to make them as user-friendly as possible. Those 
who omit these chapters will be as well off as those who purchased 
the first edition; and those who venture into these two chapters 
will, I hope, get at least some sense of where the more elementary 
material can lead.
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Most people like to think of themselves as logical. Telling someone 
‘You are not being logical’ is normally a form of criticism. To be 
illogical is to be confused, muddled, irrational. But what is logic? 
In Lewis Carroll’s Through the Looking Glass, Alice meets the 
logic-chopping pair Tweedledum and Tweedledee (Figure 1). 
When Alice is lost for words, they go onto the attack:

‘I know what you are thinking about’, said Tweedledum: ‘but it isn’t 

so, nohow.’

‘Contrariwise,’ continued Tweedledee, ‘if it was so, it might be; and 

if it were so, it would be: but as it isn’t, it ain’t. That’s logic.’

What Tweedledee is doing—at least, in Carroll’s parody—is 
reasoning. And that, as he says, is what logic is about.

We all reason. We try to figure out what is so, reasoning on the 
basis of what we already know. We try to persuade others that 
something is so by giving them reasons. Logic is the study of 
what counts as a good reason for what, and why. You have to 

Chapter 1
Validity: what follows from 
what?
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understand this claim in a certain way, though. Here are two bits 
of reasoning—logicians call them inferences:

 1. Rome is the capital of Italy, and this plane lands in Rome; so 
the plane lands in Italy.

 2. Moscow is the capital of the USA; so you can’t go to Moscow 
without going to the USA.

In each case, the claims before the ‘so’—logicians call them 
premisses—are giving reasons; the claims after the ‘so’—logicians 
call them conclusions—are what the reasons are supposed to 
be reasons for. The first piece of reasoning is fine; but the second 
is pretty hopeless, and wouldn’t persuade anyone with an 
elementary knowledge of geography: the premiss, that Moscow 
is the capital of the USA, is simply false. Notice, though, that if 
the premiss had been true—if, say, the USA had bought the 

1. Tweedledum and Tweedledee debate the finer points of logic 
with Alice.
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whole of Russia (not just Alaska) and had moved the White House 
to Moscow to be nearer the centres of power in Europe—the 
conclusion would indeed have been true. It would have followed 
from the premisses; and that is what logic is concerned with. It 
is not concerned with whether the premisses of an inference are 
true or false. That’s somebody else’s business (in this case, the 
geographer’s). It is interested simply in whether the conclusion 
follows from the premisses. Logicians call an inference where the 
conclusion really does follow from the premisses valid. So the 
central aim of logic is to understand validity.

You might think this a rather dull task—an intellectual exercise 
with somewhat less appeal than solving crossword puzzles. But it 
turns out that this is not only a very hard matter; it is one that 
cannot be divorced from a number of important (and sometimes 
profound) philosophical questions. We will see some of these as 
we go along. For the moment, let us get a few more of the basic 
facts about validity straight.

To start with, it is common to distinguish between two different 
kinds of validity. To understand this, consider the following three 
inferences:

 1. If the burglar had broken in through the kitchen window, 
there would be footprints outside; but there are no footprints; 
so the burglar didn’t break in through the kitchen window.

 2. Storm clouds are gathering; so there will be rain.

 3. Storm clouds are gathering; so the burglar didn’t break in 
through the kitchen window.

The first inference is a very straightforward one. If the premisses 
are true, so must the conclusion be. Or, to put it another way, the 
premisses couldn’t be true without the conclusion also being true. 
Logicians call an inference of this kind deductively valid. Inference 
number two is a bit different. The premiss clearly gives a good 
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reason for the conclusion, but it is not completely conclusive. After 
all, a change of wind can sometimes take the clouds in a different 
direction. So the inference is not deductively valid. Inferences like 
this are usually said to be inductively valid. Inference number 
three, by contrast, appears pretty hopeless by any standard. The 
premiss seems to provide no kind of reason for the conclusion at 
all. It is invalid—both deductively and inductively. In fact, since 
people are not complete idiots, if someone actually offered a reason 
like this, one would assume that there is some extra premiss that 
they had not bothered to tell us (maybe that burglars don’t like to 
risk standing in the rain getting wet).

Inductive validity is a very important notion. We reason 
inductively all the time; for example, in trying to solve problems 
such as why the car has broken down, why a person is ill, or who 
committed a crime. The fictional logician Sherlock Holmes was a 
master of it. Despite this, historically, much more effort has gone 
into understanding deductive validity—maybe because logicians 
have tended to be philosophers or mathematicians (in whose 
studies deductively valid inferences are centrally important), and 
not doctors or detectives. We will come back to the notion of 
induction later in the book. For the present, let’s think some more 
about deductive validity. (It is natural to suppose that deductive 
validity is the simpler notion, since valid inferences are more 
cut-and-dried. So it’s not a bad idea to try to understand this first. 
That, as we shall see, is hard enough.) Until further notice ‘valid’ 
will simply mean ‘deductively valid’.

So what is a valid inference? One, we saw, where the premisses 
can’t be true without the conclusion also being true. But what 
does that mean? In particular, what does the can’t mean? In 
general, ‘can’t’ can mean many different things. Consider, for 
example: ‘Mary can play the piano, but John can’t’; here we are 
talking about human abilities. Compare: ‘You can’t go in here: 
you need a permit’; here we are talking about what some code 
of rules permits.
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It is natural to understand the ‘can’t’ relevant to the present case 
in this way: to say that the premisses can’t be true without the 
conclusion being true is to say that in all situations in which all the 
premisses are true, so is the conclusion. So far so good; but what, 
exactly, is a situation? What sorts of things go into their makeup, 
and how do these things relate to each other? And what is it to be 
true? Now, there’s a philosophical problem for you, as Tweedledee 
might have said.

These issues will concern us by and by; but let us leave them for 
the time being, and finish with one more thing. One shouldn’t 
run away with the idea that the explanation of deductive validity 
that I have just given is itself unproblematic. (In philosophy, 
all interesting claims are contentious.) Here is one problem. 
Assuming that the account is correct, to know that an inference is 
deductively valid is to know that there are no situations in which 
the premisses are true and the conclusion is not. Now, on any 
reasonable understanding of what it is to be a situation, there are 
an awful lot of them: situations about things on the planets of 
distant stars; situations about events before there were any living 
beings in the cosmos; situations described in works of fiction; 
situations imagined by visionaries. How can one know what holds 
in all situations? Worse, there would appear to be an infinite 
number of situations (situations one year hence, situations two 
years hence, situations three years hence, . . .). It is therefore 
impossible, even in principle, to survey all situations. So if this 
account of validity is correct, and given that we can recognize 
inferences as valid or invalid (at least in many cases) we 
must have some insight into this, from some special source. 
What source?

Do we need to invoke some sort of mystic intuition? Not 
necessarily. Consider an analogous problem. We can all 
distinguish between grammatical and ungrammatical strings of 
words of our native language without too much problem. For 
example, any native speaker of English would recognize that 
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‘This is a chair’ is a grammatical sentence while ‘A chair is is a’ is 
not. But there would appear to be an infinite number of both 
grammatical and ungrammatical sentences. (For example, ‘One 
is a number’, ‘Two is a number’, ‘Three is a number’, . . . are all 
grammatical sentences. And it is easy enough to produce word 
salads ad libitum). So how do we do it? Perhaps the most 
influential of modern linguists, Noam Chomsky, suggested that 
we can do this because the infinite collections are encapsulated 
in a finite set of rules that are hard-wired into us; that evolution 
has programmed us with an innate grammar. Could logic be the 
same? Are the rules of logic hard-wired into us in the same way?

Main ideas of the chapter

• A valid inference is one where the conclusion follows from 
the premiss(es).

• A deductively valid inference is one for which there is no 
situation in which all the premisses are true, but the 
conclusion is not.
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Whether or not the rules of validity are hard-wired into us, we all 
have pretty strong intuitions about the validity or otherwise of 
various inferences. There wouldn’t be much disagreement, for 
example, that the following inference is valid: ‘She’s a woman and 
a banker; so she’s a banker’. Or that the following inference is 
invalid: ‘He’s a carpenter; so he’s a carpenter and plays baseball’.

But our intuitions can get us into trouble sometimes. What do you 
think of the following inference? The two premisses occur above 
the line; the conclusion below it.

The Queen is rich. The Queen isn’t rich.
Pigs can fly.

It certainly doesn’t seem valid. The wealth of the Queen—great or 
not—would seem to have no bearing on the aviatory abilities of pigs.

But what do you think about the following two inferences?

The Queen is rich.
Either the Queen is rich or pigs can fly.

Either the Queen is rich or pigs can fly. The Queen isn’t rich.
Pigs can fly.

Chapter 2
Truth functions—or not?
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The first of these seems valid. Consider its conclusion. Logicians 
call sentences like this a disjunction; and the clauses on either 
side of the ‘or’ are called disjuncts. Now, what does it take for a 
disjunction to be true? Just that one or other of the disjuncts is 
true. So in any situation where the premiss is true, so is the 
conclusion. The second inference also seems valid. If one or other 
of two claims is true and one of these isn’t, the other must be.

Now, the trouble is that by putting these two apparently valid 
inferences together, we get the apparently invalid inference, 
like this:

The Queen is rich.
The Queen isn’t rich.Either the Queen is rich or pigs can fly.

Pigs can fly.

This can’t be right. Chaining valid inferences together in this way 
can’t give you an invalid inference. If all the premisses are true in 
any situation, then so are their conclusions, the conclusions that 
follow from these; and so on, till we reach the final conclusion. 
What has gone wrong?

To give an orthodox answer to this question, let us focus a bit 
more on the details. For a start, let’s write the sentence ‘Pigs can 
fly’ as p, and the sentence ‘The Queen is rich’ as q. This makes 
things a bit more compact; but not only that: if you think about 
it for a moment, you can see that the two particular sentences 
actually used in the examples above don’t have much to do with 
anything; I could have set everything up using pretty much any 
two sentences; so we can ignore their content. This is what we 
do in writing the sentences as single letters.

The sentence ‘Either the Queen is rich or pigs can fly’ now 
becomes ‘Either q or p’. Logicians often write this as q p∨ . What 
of ‘The Queen isn’t rich’? Let us rewrite this as ‘It is not the case 
that the Queen is rich’, pulling the negative particle to the front of 
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the sentence. Hence, the sentence becomes ‘It is not the case that q’. 
Logicians often write this as ¬q, and call it the negation of q. 
While we are at it, what about the sentence ‘The Queen is rich 
and pigs can fly’, that is, ‘q and p’? Logicians often write this as 
q & p and call it the conjunction of q and p, q and p being the 
conjuncts. With this machinery under our belt, we can write the 
chain-inference that we met thus:

∨ ¬
q

q p q
p

What are we to say about this inference?

Sentences can be true, and sentences can be false. Let us use T for 
truth, and F for falsity. Following one of the founders of modern 
logic, the German philosopher/mathematician Gottlob Frege 
(Figure 2), these are often called truth values. Given any old 
sentence, a, what is the connection between the truth value of 
a and that of its negation,  ¬a? A natural answer is that if one is 
true, the other is false, and vice versa. Thus, if ‘The Queen is rich’ 
is true, ‘The Queen isn’t rich’ is false, and vice versa. We can 
record this as follows:

¬a has the value T just if a has the value F.
¬a has the value F just if a has the value T.

Logicians call these the truth conditions for negation. If we 
assume that every sentence is either true or false, but not both, we 
can depict the conditions in the following table, which logicians 
call a truth table:

a ¬a

T F

F T
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If a has the truth value given in the column under it, ¬a has the 
corresponding value to its right.

What of disjunction, ∨? As I have already noted, a natural 
assumption is that a disjunction, a b∨ , is true if one 
or other (or maybe both) of a and b are true, and false 
otherwise. We can record this in the truth conditions for 
disjunction:

a b∨  has the value T just if at least one of a and b has 
the value T.

a b∨  has the value F just if both of a and b have the 
value F.

2. Gottlob Frege (1848–1925), one of the founders of modern logic.
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These conditions can be depicted in the following truth table:

Each row—except the first, which is the header—now records a 
possible combination of the values for a (first column) and b 
(second column). There are four such possible combinations, and 
so four rows. For each combination, the corresponding value of 
a b∨  is given to its right (third column).

Again, while we are about it, what is the connection between the 
truth values of a and b, and that of &a b? A natural assumption 
is that &a b  is true if both a and b are true, and false otherwise. 
Thus, for example, ‘John is 35 and has brown hair’ is true just if 
‘John is 35’ and ‘John has brown hair’ are both true. We can record 
this in the truth conditions for conjunction:

&a b  has the value T just if both of a and b have the value T.
&a b  has the value F just if at least one of a and b has the 
value F.

These conditions can be depicted in the following truth table:

a b

T T T

T F T

F T T

F F F

∨a b

a b a & b

T T T

T F F

F T F

F F F
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Now, how does all this bear on the problem we started with? Let us 
come back to the question I raised towards the end of Chapter 1: 
what is a situation? A natural thought is that whatever a situation 
is, it determines a truth value for every sentence. So, for example, 
in one particular situation, it might be true that the Queen is rich 
and false that pigs can fly. In another it might be false that the 
Queen is rich, and true that pigs can fly. (Note that these situations 
may be purely hypothetical!) In other words, a situation 
determines each relevant sentence to be either T or F. The relevant 
sentences here do not contain any occurrences of ‘and’, ‘or’, or ‘not’. 
Given the basic information about a situation, we can use truth 
tables to work out the truth values of the sentences that do.

For example, suppose we have the following situation:

(r might be the sentence ‘Rhubarb is nutritious’, and ‘p : T ’ means 
that p is assigned the truth value T, etc.) What is the truth value 
of, say, p & (¬r q∨ )? We work out the truth value of this in exactly 
the same way that we would work out the numerical value of 
3 × (−6 + 2) using tables for multiplication and addition. The 
truth value of r is T. So the truth table for ¬ tells us that the truth 
value of ¬r  is F. But since the value of q is F, the truth table 
for ∨ tells us that the value of ¬r q∨  is F. And since the truth value 
of p is T, the truth table for & tells us that the value of p & (¬r q∨ ) 
is F. In this step-by-step way, we can work out the truth value of 
any formula containing occurrences of &, ∨, and ¬.

Now, recall from Chapter 1 that an inference is valid provided that 
there is no situation which makes all the premisses true, and the 
conclusion untrue (false). That is, it is valid if there is no way of 
assigning Ts and Fs to the relevant sentences, which results in all 

p : T

q : F

r : T
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the premisses having the value T and the conclusion having the 
value F. Consider, for example, the inference that we have already 
met, /q q p∨ . (I write this on a single line to save Oxford 
University Press money.) The relevant sentences are q and p. 
There are four combinations of truth values, and for each of these 
we can work out the truth values for the premiss and conclusion. 
We can represent the result as follows:

The first two columns give us all the possible combinations of truth 
values for q and p. The last two columns give us the corresponding 
truth values for the premiss and the conclusion. The third column 
is the same as the first. This is an accident of this example, due to 
the fact that, in this particular case, the premiss happens to be one 
of the relevant sentences. The fourth column can be read off from 
the truth table for disjunction. Given this information, we can see 
that the inference is valid. For there is no row where the premiss, 
q, is true and the conclusion, q p∨ , is not.

What about the inference q p∨ , ¬ /q p ? Proceeding in the same 
way, we obtain:

q p q

T T T T

T F T T

F T F T

F F F F

∨q p

q p p

T T T F T

T F T F F

F T T T T

F F F T F

∨q p ¬q
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This time, there are five columns, because there are two premisses. 
The truth values of the premisses and conclusion can be read off 
from the truth tables for disjunction and negation. And again, 
there is no row where both of the premisses are true and the 
conclusion is not. Hence, the inference is valid.

What about the inference with which we started: q, ¬ /q p ? 
Proceeding as before, we get:

Again, the inference is valid; and now we see why. There is no row 
in which both of the premisses are true and the conclusion is false. 
Indeed, there is no row in which both of the premisses are true. 
The conclusion doesn’t really matter at all! Sometimes, logicians 
describe this situation by saying that the inference is vacuously 
valid, just because the premisses could never be true together.

Here, then, is a solution to the problem with which we started. 
According to this account, our original intuitions about this 
inference were wrong. After all, people’s intuitions can often 
be misleading. It seems obvious to everyone that the Earth is 
motionless—until they take a course in physics, and find out 
that it is really hurtling through space. We can even offer an 
explanation as to why our logical intuitions go wrong. Most of 
the inferences we meet in practice are not of the vacuous kind. 
Our intuitions develop in this sort of context, and don’t apply 
generally—just as the habits you build up learning to walk (for 
example, not to lean to the side) don’t always work in other 
contexts (for example, when you to learn to ride a bike).

q p q p

T T T F T

T F T F F

F T F T T

F F F T F

¬q
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We will come back to this matter in a later chapter. But let us end 
this one with a brief look at the adequacy of the machinery we 
have used. Things here are not as straightforward as one might 
have hoped. According to this account, the truth value of a 
sentence ¬a  is completely determined by the truth value of the 
sentence a. In a similar way, the truth values of the sentences 
a b∨  and &a b  are completely determined by the truth values 
of a and b. Logicians call operations that work like this truth 
functions. But there are good reasons to suppose that ‘or’ and 
‘and’, as they occur in English, are not truth functions—at least, 
not always.

For example, according to the truth table for &, ‘a and b’ always 
has the same truth value as ‘b and a’: namely, they are both true 
if a and b are both true, and false otherwise. But consider the 
sentences:

 1. John hit his head and fell down.
 2. John fell down and hit his head.

The first says that John hit his head and then fell down. The 
second says that John fell down and then hit his head. Clearly, the 
first could be true whilst the second is false, and vice versa. Thus, 
it is not just the truth values of the conjuncts that are important, 
but which conjunct caused which.

Similar problems beset ‘or’. According to the account we had, ‘a or b’ 
is true if one or other of a and b is true. But suppose a friend says:

Either you come now or we will be late;

and so you come. Given the truth table for ∨, the disjunction is 
true. But suppose you discover that your friend had been tricking 
you: you could have left half an hour later and still been on time. 
Under these circumstances, you would surely say that your friend 
had lied: what he had said was false. Again, it is not merely the 



16

truth values of the disjuncts that are important, but the existence 
of a connection of a certain kind between them.

I will leave you to think about these matters. The material we have 
been looking at gives us at least a working account of how certain 
logical machinery functions; and we will draw on this in succeeding 
chapters, unless the ideas in those chapters explicitly override  
it—which they will sometimes.

The machinery in question deals only with certain kinds of 
inferences: there are many others. We have only just started.

Main ideas of the chapter

•  In a situation, a unique truth value (T or F) is assigned to each 
relevant sentence.

 • a¬  is T just if a is F.

 • ∨a b  is T just if at least one of a and b is T.

 • a & b  is T just if both of a and b are T.
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The inferences that we looked at in Chapter 2 involved phrases 
like ‘or’ and ‘it is not the case that’, words that add to, or join, 
whole sentences to make other whole sentences; but there are 
lots of inferences that appear to work in a quite different way. 
Consider, for example, the inference:

Marcus gave me a book.
Someone gave me a book.

Neither the premiss nor the conclusion has a part which is itself a 
whole sentence. If this inference is valid, it is so because of what 
is going on within whole sentences.

Traditional grammar tells us that the simplest whole sentences are 
composed of a subject and a predicate. Thus, consider the examples:

 1. Marcus saw the elephant.
 2. Annika fell asleep.
 3. Someone hit me.
 4. Nobody came to my party.

The first word, in each case, is the subject of the sentence: it tells 
us what the sentence is about. The rest is the predicate: this 
tells us what is said about it. Now, when is such a sentence true? 

Chapter 3
Names and quantifiers:  
is nothing something?
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Take the second example. It is true if the object referred to by the 
subject ‘Annika’ has the property expressed by the predicate, that 
is, fell asleep.

All well and good. But what does the subject of sentence 3 refer 
to? The person who hit me? But maybe nobody hit me. No one 
said that this was a true sentence. The case with sentence 4 is 
even worse. To whom does ‘nobody’ refer? In Through the 
Looking Glass, just before her encounter with the Lion and the 
Unicorn, Alice comes across the White King, who is waiting for a 
messenger. (For some reason, when the messenger turns up, it 
looks disconcertingly like a rabbit (Figure 3).) When the King 
meets Alice, he says:

‘Just look along the road, and tell me if you can see . . . [the 

Messenger].’

‘I see nobody on the road,’ said Alice.

‘I only wish I had such eyes,’ the King remarked in a fretful tone. 

‘To be able to see Nobody! And at that distance too! Why, it’s as 

much as I can do to see real people, by this light!’

Carroll is making a logical joke, as he often does. When Alice 
says that she can see nobody, she is not saying that she can see a 
person—real or otherwise. ‘Nobody’ does not refer to a person—or 
to anything else.

Words like ‘nobody’, ‘someone’, ‘everyone’ are called by modern 
logicians quantifiers, and they are distinguished from names like 
‘Marcus’ and ‘Annika’. What we have just seen is that, even if 
both quantifiers and names can be the grammatical subjects of 
sentences, they must function in quite different ways. So, how 
do quantifiers work?

Here is a standard modern answer. A situation comes furnished 
with a stock of objects. In our case, the relevant objects are all people. 
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All the names which occur in our reasoning about this situation 
refer to one of the objects in this collection. Thus, if we write 
m for ‘Marcus’, m refers to one of these objects. And if we write 
H for ‘is happy’, then the sentence mH is true in the situation just 
if the object referred to by m has the property expressed by H. 
(For perverse reasons of their own, logicians usually reverse 
the order, and write Hm, instead of mH. This is just a matter 
of convention.)

Now consider the sentence ‘Someone is happy’. This is true in the 
situation just if there is some object or other, in the collection of 
objects, that is happy—that is, some object in the collection, call it 
x, is such that x is happy. Let us write ‘Some object, x, is such that’ 
as .x∃  Then we may write the sentence as: ‘ x x∃  is happy’; or 
remembering that we are writing ‘is happy’ as H, as: ∃x xH. 
Logicians sometimes call x∃  a particular quantifier.

3. Nobody.
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What about ‘Everyone is happy’? This is true in a situation if every 
object in the relevant collection is happy. That is, every object, x, 
in the collection is such that x is happy. If we write ‘Every object, 
x, is such that’ as x∀ , then we can write this as ∀x xH . Logicians 
usually call x∀  a universal quantifier.

There are now no prizes for guessing how we are to understand 
‘Nobody is happy’. This just means that there is no object, x, in the 
relevant collection, such that x is happy. We could have a special 
symbol meaning ‘No object, x, is such that’, but as a matter of fact, 
logicians don’t normally bother with one. For to say that no one is 
happy is to say it is not the case that somebody is happy. So we 
may write this as ∃¬ .x xH

This analysis of quantifiers shows us that names and quantifiers 
work quite differently. In particular, the fact that ‘Marcus is happy’ 
and ‘Someone is happy’ get written, very differently, as mH and 
∃x xH, respectively, shows us this. It shows us, moreover, that 
apparently simple grammatical form may be misleading. Not all 
grammatical subjects are equal. The account, incidentally, shows 
us why the inference with which we started is valid. Let us write 
G for ‘gave me the book’. Then the inference is:

mG
x xG∃

It is clear that if, in some situation, the object referred to by 
the name m gave me the book, then some object in the relevant 
collection gave me the book. By contrast, the White King is 
inferring from the fact that Alice saw nobody that she saw 
somebody (viz., Nobody). If we write ‘is seen by Alice’ as A 
then the King’s inference is:

∃
∃

¬ x xA
x xA
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This is clearly invalid. If there is no object in the relevant domain 
that was seen by Alice, it is obviously not true that there is some 
object in the relevant domain that was seen by her.

You might think that this is all a lot of fuss about nothing—in 
fact, just a way of spoiling a good joke. But it’s a lot more serious 
than that. For quantifiers play a central role in many important 
arguments in mathematics and philosophy. Here is one 
philosophical example. It’s a natural assumption that nothing 
happens without an explanation: people don’t get ill for no reason; 
cars don’t break down without a fault. Everything, then, has a cause. 
But what could the cause of everything be? Obviously it can’t be 
anything physical, like a person; or even something like the Big 
Bang of cosmology. Such things must themselves have causes. So it 
must be something metaphysical. God is the obvious candidate.

This is one version of an argument for the existence of God, often 
called the Cosmological Argument. One might object to the 
argument in various ways. But at its heart, there is an enormous 
logical fallacy. The sentence ‘Everything has a cause’ is ambiguous. 
It can mean that everything that happens has some cause or 
other—that is, for every x, there is a y, such that x is caused by y; 
or it can mean that there is something which is the cause of 
everything—that is, there is some y such that for every x, x is 
caused by y. Suppose we think of the relevant domain of objects 
as causes and effects, and write ‘x is caused by y’ as xCy. Then 
we can write these two meanings as, respectively:

1   x y xCy∀ ∃

2 ∃ ∀  y x xCy

Now, these are not logically equivalent. The first follows from the 
second. If there is a thing which is the cause of everything, then 
certainly, everything that happens has some cause or other. But if 
everything has some cause or other, it does not follow that there 
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is one and the same thing which is the cause of everything. 
(Compare: Everyone has a mother; it does not follow that there 
is someone who is the mother of everyone.)

This version of the Cosmological Argument trades on this 
ambiguity. What is established by talk of illnesses and cars is 1. 
But immediately, the argument goes on to ask what that cause 
is, assuming that it is 2 that has been established. Moreover, this 
slide is hidden because, in English, ‘Everything has a cause’ 
can be used to express either 1 or 2. Notice, also, that there is 
no ambiguity if the quantifiers are replaced by names. ‘The 
background radiation of the cosmos is caused by the Big Bang’ 
is not at all ambiguous. It may well be that a failure to 
distinguish between names and quantifiers is a further 
reason why one may fail to see the ambiguity.

So a correct understanding of quantifiers is important—and not 
just for logic. The words ‘something’, ‘nothing’, etc., do not stand 
for objects, but function in a completely different way. Or at least, 
they can do: things are not quite that simple. Consider the cosmos 
again. Either it stretches back infinitely into time past, or at some 
particular time it came into existence. In the first case, it had no 
beginning, but was always there; in the second, it began at some 
particular time. At different times, physics has, in fact, told us 
different things about the truth of this matter. Never mind this, 
however; just consider the second possibility. In this case, the 
cosmos came into existence out of nothing—or nothing physical, 
anyway, the cosmos being the totality of everything physical. Now 
consider that sentence, ‘The cosmos came into existence out of 
nothing’. Let c be the cosmos, and let us write ‘x came into existence 
out of y’ as xEy. Then given our understanding of quantifiers, 
this sentence should mean ¬ x cEx∃ . But it does not mean this; for 
this is equally true in the first alternative cosmology. In this, the 
cosmos, being infinite in time past, did not come into being at all. 
In particular, then, it is not the case that it came into being from 
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something or other. When we say that in the second cosmology 
the cosmos came into existence out of nothing, we mean that it 
came into being from nothingness. So nothing can be a thing. 
Perhaps the White King was not so foolish after all.

Main ideas of the chapter

•  The sentence nP is true in a situation if the object referred 
to by n has the property expressed by P in that situation.

• ∃ Px x is true in a situation just if some object in the situation, 
x, is such that xP.

• ∀ Px x is true in a situation just if every object in the situation, 
x, is such that xP.
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While we are on the topic of subjects and predicates, there is a 
certain kind of phrase that can be the subject of sentences, which 
we haven’t talked about yet. Logicians usually call them definite 
descriptions, or sometimes just descriptions—though be warned 
that this is a technical term. Descriptions are phrases like ‘the 
man who first landed on the Moon’ and ‘the only man-made 
object on the Earth that is visible from space’. In general, 
descriptions have the form: the thing satisfying such and such a 
condition. Following the English philosopher/mathematician, 
Bertrand Russell (Figure 4), one of the founders of modern logic, 
we can write them as follows. Rewrite ‘the man who first landed 
on the Moon’ as ‘the object, x, such that x is a man and x landed 
first on the Moon’. Now write ιx  for ‘the object, x, such that’, and 
this becomes ‘ ι (x x is a man and x landed first on the Moon)’. If 
we write M for ‘is a man’ and F for ‘landed first on the Moon’, we 
then get: ι ( & ).x xM xF In general, a description is something of 
the form ι ,xxc  where cx is some condition containing occurrences 
of x. (That’s what the little subscript x is there to remind you of.)

Since descriptions are subjects, they can be combined with 
predicates to make whole sentences. Thus, if we write U for ‘was 
born in the USA’, then ‘the man who first landed on the Moon 
was born in the USA’ is: ι ( & ) .x xM xF U  Let us write μ as a 
shorthand for ι ( & ).x xM xF  (I use a Greek letter to remind you 

Chapter 4
Descriptions and existence: 
did the Greeks worship Zeus?
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that it is really a description.) Then this is μU. Similarly, ‘The first 
man to land on the Moon is a man and he landed first on the 
Moon’ is &M Fµ µ .

In terms of the division of Chapter 3, descriptions are names, not 
quantifiers. That is, they refer to objects—if we are lucky: we’ll 
come back to that. Thus, ‘The man who first landed on the Moon 
was born in the USA’, μU, is true just if the particular person 
referred to by the phrase μ has the property expressed by U.

But descriptions are a special kind of name. Unlike what we might 
call proper names, like ‘Annika’ and ‘the Big Bang’, they carry 
information about the object referred to. Thus, for example, ‘the 
man who first landed on the Moon’ carries the information that 

4. Bertrand Russell (1872–1970), another of the founders of modern 
logic.
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the object referred to has the property of being a man and being 
first on the Moon. This might all seem banal and obvious, but 
things are not as simple as they appear. Because descriptions 
carry information in this way, they are often central to important 
arguments in mathematics and philosophy; and one way to 
appreciate some of these complexities is to look at an example of 
such an argument. This is another argument for the existence of 
God, often called the Ontological Argument. The argument comes 
in a number of versions, but here is a simple form of it:

God is the being with all the perfections.
But existence is a perfection.
So God possesses existence.

In other words, God exists. If you haven’t met this argument 
before, it will appear rather puzzling. For a start, what is a 
perfection? Loosely, a perfection is something like omniscience 
(knowing everything that there is to know), omnipotence (being 
able to do everything that can be done), and being morally perfect 
(acting always in the best possible way). In general, the perfections 
are all those properties that it is a jolly good thing to have. Now, 
the second premiss says that existence is a perfection. Why on 
earth should this be so? The reason one might suppose this to be 
so is a rather complex one, with its roots in the philosophy of one 
of the two most influential ancient Greek philosophers, Plato. 
Fortunately, we can work around this issue. We can make a list of 
properties like omniscience, omnipotence, etc., include existence 
in the list, and simply let ‘perfection’ mean any property on the 
list. Moreover, we can take ‘God’ to be synonymous with a certain 
description, namely, ‘the being which has all the perfections 
(i.e. those properties on the list)’. In the Ontological Argument, 
both premisses are now true by definition and so drop out of 
the picture. The Argument then reduces to a one-liner:

The object which is omniscient, omnipotent, morally 
perfect . . . and exists, exists
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—and, we might add, is omnipotent, omniscient, morally perfect, 
and so on. This certainly looks to be true. To make things more 
perspicuous, suppose we write the list of God’s properties as  
P1, P2, . . . , Pn. So the last one, Pn, is existence. The definition of  
‘God’ is: ι …1( & & ).nx xP xP  Let us write this as γ. Then the 
one-liner is γ … γ1 & & nP P  (from which γ nP  follows).

This is a special case of something more general, namely: the thing 
satisfying such and such a condition, satisfies that very condition. 
This is often called the Characterization Principle (a thing has 
those properties by which it is characterized). We’ll abbreviate this 
as CP. We have already met an example of the CP, with ‘The first 
man to land on the Moon is a man and he landed first on the 
moon’, µ µ& .M F  In general, we obtain a case of the CP if we take 
some description, ι ,xxc and substitute it for every occurrence 
of x in the condition cx.

Now, for all the world, the CP looks to be true by definition. Of 
course things have those properties that they are characterized 
as having. Unfortunately, in general, it is false. For many things 
follow from it that are indisputably untrue.

For a start, we can use it to deduce the existence of all kinds of 
things that do not really exist. Consider the (non-negative) 
integers: 0, 1, 2, 3, . . . . There is no greatest. But using the CP, we 
can show the existence of a greatest. Let cx be the condition ‘x is 
the greatest integer & x exists’. Let δ be ι .xxc  Then the CP gives 
us ‘δ is the greatest integer, and δ exists’. The absurdities do not 
end there. Consider some unmarried person, say the Pope. We 
can prove that he is married. Let cx be the condition ‘x married the 
Pope’. Let δ be the description ι .xxc  The CP gives us ‘δ married the 
Pope’. So someone married the Pope, in other words the Pope 
is married.

What is to be said about all this? A fairly standard modern answer 
goes as follows. Consider the description ι .xxc  If there is a 
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unique object that satisfies the condition cx in some situation, 
then the description refers to it. Otherwise, it refers to nothing: it 
is an ‘empty name’. Thus, there is a unique x, such that x is a man 
and x landed first on the moon: Armstrong. So ‘the x such that x 
is a man and x landed first on the moon’ refers to Armstrong. 
Similarly, there is a unique least integer, namely 0; hence, the 
description ‘the object which is the least integer’ denotes 0. But 
since there is no greatest integer, ‘the object which is the greatest 
integer’ fails to refer to anything. Similarly, the description ‘the 
city in Australia which has more than a million people’ also fails to 
refer. Not, this time, because there are no such cities, but because 
there are several of them.

What has this to do with the CP? Well, if there is a unique object 
satisfying cx in some situation, then ι xxc refers to it. So the 
instance of the CP concerning cx is true: ι xxc  is one of the 
things—in fact, the only thing—that satisfies cx. In particular, 
the least integer is (indeed) the least integer; the city which is 
the federal capital of Australia, is indeed, the federal capital of 
Australia, etc. So some instances of the CP hold.

But what if there is no unique object satisfying cx? If n is a name 
and P is a predicate, the sentence nP is true just if there is an 
object that n refers to, and it has the property expressed by P. 
Hence, if n denotes no object, nP must be false. Thus, if there is 
no unique thing having the property P (if, for example, P is ‘is a 
winged horse’), ι( )x xP P  is false. As is to be expected, under these 
conditions, the CP may fail.

Now, how does all this bear on the Ontological Argument? Recall 
that the instance of the CP invoked there is γ … γ1 & & ,nP P  where 
γ is the description ι …1( & & ).nx xP xP  Either there is something 
satisfying …1 & & ,nxP xP  or there is not. If there is, it must be 
unique. (There cannot be two omnipotent objects: if I am 
omnipotent, I can stop you doing things, so you cannot be 
omnipotent.) So γ refers to this thing, and γ … γ1 & & nP P is 
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true. If there is not, then γ refers to nothing; so each conjunct 
of γ γ…1 & & nP P  is false; as, therefore, is the whole conjunction. 
In other words, the instance of the CP used in the argument is 
true enough if God exists; but it is false if God does not exist. So 
if one is arguing for the existence of God, one cannot simply 
invoke this instance of the CP: that would just be assuming what 
one is supposed to be proving. Philosophers say that such an 
argument begs the question; that is, begs to be granted exactly 
what is in question. And an argument that begs the question 
clearly does not work.

So much for the Ontological Argument. Let us finish this chapter 
by seeing that the account of descriptions that I have explained 
is itself problematic in certain ways. According to this account, 
if δP is a sentence where δ is a description that does not refer to 
anything, it is false. But this does not always seem to be right. 
For example, it would seem to be true that the most powerful 
of the ancient Greek gods was called ‘Zeus’, lived on Mount 
Olympus, was worshipped by the Greeks, and so on. Yet there 
were, in reality, no ancient Greek gods. They did not, in fact, 
exist. If this is right, then the description ‘the most powerful of 
the ancient Greek gods’ does not refer to anything. But in that 
case, there are true subject/predicate sentences in which the 
subject term fails to refer to anything, such as ‘The most powerful 
of the ancient Greek gods was worshipped by the Greeks’. To put 
it tendentiously, there are truths about non-existent objects, 
after all.

Main idea of the chapter

• ι c P( )xx  is true in a situation just if, in that situation, there is 
a unique object, a, satisfying cx, and aP.
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Often, things seem simple when one thinks about normal cases; 
but this can be deceptive. When one considers more unusual 
cases, the simplicity may well disappear. So it is with reference. 
We saw in Chapter 4 that things are not as straightforward as 
one might have supposed, once one takes into account the 
fact that some names may not refer to anything. Further 
complexities arise when we consider another kind of unusual 
case: self-reference.

It is quite possible for a name to refer to something of which it, 
itself, is part. For example, consider the sentence ‘This sentence 
contains five words’. The name which is the subject of this 
sentence, ‘this sentence’, refers to the whole sentence, of which 
that name is a part. Similar things happen in a set of regulations 
which contain the clause ‘These regulations may be revised by a 
majority decision of the Department of Philosophy’, or by a 
person who thinks ‘If I am thinking this thought, then I must 
be conscious’.

These are all relatively unproblematic cases of self-reference. 
There are other cases which are quite different. For example, 
suppose someone says:

This very sentence that I am now uttering is false.

Chapter 5
Self-reference: what is  
this chapter about?
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Call this sentence λ. Is λ true or false? Well, if it is true, then what 
it says is the case, so λ is false. But if it is false, then, since this is 
exactly what it claims, it is true. In either case, λ would seem to be 
both true and false. The sentence is like a Möbius strip (Figure 5), 
a topological configuration where, because of a twist, the inside is 
the outside, and the outside is the inside: truth is falsity, and 
falsity is truth.

Or suppose someone says:

This very sentence that I am now uttering is true.

Is that true or false? Well, if it is true, it is true, since that is what 
it says. And if it is false, then it is false, since it says that it is true. 

5. A Möbius strip. Inside is outside, and outside in. Truth is falsity, 
and falsity truth.
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Hence, both the assumption that it is true and the assumption 
that it is false appear to be consistent. Moreover, there would seem 
to be no other fact that settles the matter of what truth value it 
has. It’s not just that it has some value which we don’t, or even 
can’t, know. Rather, there would seem to be nothing that 
determines it as either true or false at all. It would seem to be 
neither true nor false.

These paradoxes are very ancient. The first of them appears to 
have been discovered by the ancient Greek philosopher Eubulides, 
and is often called the liar paradox. There are many more, and 
more recent, paradoxes of the same kind, some of which play a 
crucial role in central parts of mathematical reasoning. Here is 
another example. A set is a collection of objects. Thus, for 
example, one may have the set of all people, the set of all numbers, 
the set of all abstract ideas. Sets can be members of other sets. 
Thus, for example, the set of all the people in a room is a set, and 
hence is a member of the set of all sets. Some sets can even be 
members of themselves: the set of all the objects mentioned on 
this page is an object mentioned on this page (I have just 
mentioned it), and so a member of itself; the set of all sets is a 
set, and so a member of itself. And some sets are certainly not 
members of themselves: the set of all people is not a person, and 
so not a member of the set of all people.

Now, consider the set of all those sets that are not members 
of themselves. Call this R. Is R a member of itself, or is it not? 
If it is a member of itself, then it is one of the things that is 
not a member of itself, and so it is not a member of itself. If, 
on the other hand, it is not a member of itself, it is one of 
those sets that are not members of themselves, and so it is 
a member of itself. It would seem that R both is and is not a 
member of itself.

This paradox was discovered by Bertrand Russell, whom we met 
in Chapter 4, and so is called Russell’s paradox. Like the liar 
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paradox, it has a cousin. What about the set of all sets that are 
members of themselves. Is this a member of itself, or is it not? 
Well, if it is, it is; and if it is not, it is not. Again, there would 
seem to be nothing to determine the matter either way.

What examples of this kind do is challenge the assumption we 
made in Chapter 2—that every sentence is either true or false, but 
not both. ‘This sentence is false’, and ‘R is not a member of itself ’ 
seem to be both true and false; and their cousins seem to be 
neither true nor false.

How can this idea be accommodated? Simply by taking these 
other possibilities into account. Assume that in any situation, 
every sentence is true but not false, false but not true, both true 
and false, or neither true nor false. Recall from Chapter 2 that the 
truth conditions for negation, conjunction, and disjunction are 
the following. In any situation:

¬a has the value T just if a has the value F.
¬a has the value F just if a has the value T.

a & b has the value T just if both a and b have the value T.
a & b has the value F just if at least one of a and b has the 

value F.

∨a b  has the value T just if at least one of a and b has the 
value T.

∨a b  has the value F just if both a and b have the value F.

Using this information, it is easy to work out the truth values of 
complex sentences under the new regime. Some examples:

 • Suppose we have the following situation:

a : T , F
√×
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(The tick means that a has the value; a cross means that it 
doesn’t.) Then ¬a has the value T (by the first clause for negation), 
and ¬a does not have the value F (by the second).

 • Or in the following:

a : T , F
√√

b : T , F
√ ×

a & b has the value T (by the first clause for conjunction), and a & b 
has the value F (by the second).

 • And in the following:

a : T, F

T, F

√ ×

b :
× ×

∨a b  has the value T (by the first clause for disjunction), and 
∨a b  does not have the value F (by the second).

What does this tell us about validity? A valid argument is still one 
where there is no situation where the premisses are true, and the 
conclusion is not true. And a situation is still something that gives 
a truth value to each relevant sentence. Only now, the situation 
may give a sentence one truth value, two, or none. So consider the 
inference ∨/ .q q p  In any situation where q has the value T, the 
conditions for ∨ assure us that ∨q p  also has the value T. (It may 
have the value F also, but no matter.) Thus, if the premiss has the 
value T, so does the conclusion. The inference is valid.

At this point, it is worth returning to the inference with which we 
started in Chapter 2: q, ¬q/p. As we saw in that chapter, given the 
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assumptions made there, this inference is valid. But given the new 
assumptions, things are different. To see why, just take a situation 
where q has the values T and F, but p has just the value F. Since q 
is both T and F, ¬q is also both T and F. Hence, both premisses are 
T (and F as well, but that is not relevant), and the conclusion, p, is 
not T. This gives us another diagnosis of why we find the inference 
intuitively invalid. It is invalid.

That’s not the end of the matter, though. As we saw in Chapter 2, 
this inference follows from two other inferences. The first of 
these ∨( / )q q p we have just seen to be valid on the present 
account. The other must therefore be invalid; and so it is. 
The other inference is:

∨ ¬q p q
p

Now consider a situation where q gets the values T and F, and p 
gets just the value F. It is easy enough to check that both premisses 
get the value T (as well as F). But the conclusion does not get the 
value T. Hence, the inference is invalid.

In Chapter 2, I said that this inference does seem intuitively valid. 
So, given the new account, our intuitions about this must be 
wrong. One can offer an explanation of this fact, however. The 
inference appears to be valid because, if ¬q is true, this seems to 
rule out the truth of q, leaving us with p. But on the present 
account, the truth of ¬q does not rule out that of q. It would do 
so only if something could not be both true and false. When we 
think the inference to be valid, we are perhaps forgetting such 
possibilities, which can arise in unusual cases, like those which 
are provided by self-reference.

Which explanation of the situation is better, the one that we ended 
up with in Chapter 2, or the one we now have? That is a question 
which I will leave you to think about. Let us end, instead, by noting 
that, as always, one may challenge some of the ideas on which the 
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new account rests. Consider the liar paradox and its cousin. Take 
the latter first. The sentence ‘This sentence is true’ was supposed to 
be an example of something that is neither true nor false. Let us 
suppose that this is so. Then, in particular, it is not true. But it, 
itself, says that it is true. So it must be false, contrary to our 
supposition that it is neither true nor false. We seem to have ended 
up in a contradiction. Or take the liar sentence, ‘This sentence is 
false’. This was supposed to be an example of a sentence that is 
both true and false. Let’s tweak it a bit. Consider, instead, the 
sentence ‘This sentence is not true’. What is the truth value of this? 
If it is true, then what it says is the case; so it is not true. But if it’s 
not true, then, since that is what it says, it is true. Either way, it 
would seem to be both true and not true. Again, we have a 
contradiction on our hands. It’s not just that a sentence may take 
the values T and F; rather, a sentence can both be T and not be T.

It is situations of this kind that have made the subject of  
self-reference a contentious one, ever since Eubulides. It is, 
indeed, a very tangled issue.

Final comment: to avoid possible misunderstandings, I note that 
in the chapters to follow I am going to resume the assumption 
that statements are true or false, but not both or neither—except 
in Chapter 10 (on fuzzy logic).

Main idea of the chapter

• Sentences may be true, false, both, or neither.
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We often claim not just that something is so, but that it must be so. 
We say: ‘It must be going to rain’, ‘It can’t fail to rain’, ‘Necessarily, 
it’s going to rain’. We also have many ways of saying  that, though 
something may, in fact, not be the case, it could be. We say: ‘It 
could rain tomorrow’, ‘It is possible that it will rain tomorrow’, ‘It’s 
not impossible that it will rain tomorrow’. If a is any sentence, 
logicians usually write the claim that a must be true as a, and 
the claim that a could be true as ◊a.

 and ◊ are called modal operators, since they express the modes 
with which things are true or false (necessarily, possibly). The two 
operators are, in fact, connected. To say that something must be 
the case is to say that it is not possible for it not to be the case. 
That is, a means the same as ¬◊¬a. Similarly, to say that it is 
possible for something to be the case is to say that it is not 
necessarily the case that it is false. That is, ◊a means the same 
as ¬¬a. For good measure, we can express the fact that it is 
impossible for a to be true, indifferently, as ¬◊a (it is not possible 
that a), or as ¬a (a is necessarily false).

Unlike the operators we have met so far,  and ◊ are not truth 
functions. As we saw in Chapter 2, when you know the truth value 
of a, you can work out the truth value of ¬a. Similarly, when you 
know the truth values of a and b, you can work out the truth 

Chapter 6
Necessity and possibility: 
what will be must be?
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values of ∨a b  and a & b. But you cannot infer the truth value of 
◊a simply from knowledge of the truth value of a. For example, let 
r be the sentence ‘I will rise before 7 a.m. tomorrow’: r is, as a 
matter of fact, false. But it certainly could be true: I could set my 
alarm clock and rise early. Hence, ◊r is true. By contrast, let j 
be the sentence ‘I will jump out of bed and hover 2m above the 
ground’. Like r, this is false too. But unlike r, it is not even 
possible that it is true. That would violate the laws of gravity. 
Hence, ◊j is false. So the truth value of a sentence, a, does not 
determine that of ◊a: r and j are both false, but ◊r is true and ◊j 
is false. Similarly, the truth value of a does not determine the 
truth value of a. Let r now be the sentence ‘I will rise before 8 a.m. 
tomorrow’. This is, in fact, true; but it is not necessarily true. 
I could stay in bed. Let j now be the sentence ‘If I jump out of 
bed tomorrow morning, I will have moved’. That is also true, 
but there is no way that that could be false. It’s necessarily true. 
Hence, r and j are both true, but one is necessarily true, and 
the other is not.

Modal operators are therefore operators of a kind quite different 
from anything that we have met so far. They are also important 
and often puzzling operators. To illustrate this, here is an argument 
for fatalism, given by the other of the two most influential ancient 
Greek philosophers, Aristotle (Figure 6).

Fatalism is the view that whatever happens must happen: it could 
not have been avoided. When an accident occurs, or a person dies, 
there is nothing that could have been done to prevent it. Fatalism 
is a view that has appealed to some. When something goes wrong, 
there is a certain amount of comfort to be derived from the 
thought that it could not have been otherwise. None the less, 
fatalism entails that I am powerless to alter what happens, and 
this seems plainly false. If I am involved in a traffic accident today, 
I could have avoided it simply by taking a different route. So what 
is Aristotle’s argument? It goes like this. (Ignore the boldface for 
the present; we will come back to this.)



39

Take any claim you like—say, for the sake of illustration, that 
I will be involved in a traffic accident tomorrow. Now, we may 
not know yet whether or not this is true, but we know that 
either I will be involved in an accident or I won’t. Suppose the 
first of these. Then, as a matter of fact, I will be involved in a 
traffic accident. And if it is true to say that I will be involved in 
an accident then it cannot fail to be the case that I will be 
involved. That is, it must be the case that I will be involved. 
Suppose, on the other hand, that I will not, as a matter of fact, 
be involved in a traffic accident tomorrow. Then it is true to say 
that I will not be involved in an accident; and if this is so, it 
cannot fail to be the case that I won’t be in an accident. That 
is, it must be the case that I am not involved in an accident. 
Whichever of these two does happen, then, it must happen. 
This is fatalism.

6. Aristotle (384–322 bce), the founder of formal logic.
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What is one to say about this? To answer this, let us look at a 
standard modern understanding of modal operators. We suppose 
that every situation, s, comes furnished with a bunch of possibilities, 
that is, situations that are possible as far as s goes—to be definite, 
let us say situations that could arise without violating the laws of 
physics. Thus, if s is the situation that I am presently in (being 
in Australia), my being in London in a week’s time is a possible 
situation; whilst my being on Alpha Centauri (over four light-years 
away) is not. Following the 17th-century philosopher and logician 
Leibniz, logicians often call these possible situations, colourfully, 
possible worlds. Now, to say that ◊a (it is possibly the case that a) 
is true in s, is just to say that a is in fact true in at least one of 
the possible worlds associated with s. And to say that a (it is 
necessarily the case that a) is true in s, is just to say that a is true 
in all the possible worlds associated with s. This is why  and ◊ are 
not truth functions. For a and b may have the same truth value 
in s, say F, but may have different truth values in the worlds 
associated with s. For example, a may be true in one of them 
(say, ś ), but b may be true in none, like this:

s
a : F

b : F

s′
a : T

b : F

This account gives us a way of analysing inferences employing 
modal operators. For example, consider the inference:

◊ ◊
◊( & )

a b
a b
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This is invalid. To see why, suppose that the situations associated 
with s are s1 and s2, and that truth values are as follows:

s

a : F

b : F

s1
a : F 

s2
a : T

b : F b : T

a is T at s1; hence, ◊a is true in s. Similarly, b is true in s2; hence, 
◊b is true in s. But a & b is true in no associated world; hence,  
◊(a & b) is not true in s.

By contrast, the following inference is valid:

( & )
a b
a b
� �

�

For if the premisses are true in a situation s, then a and b are true 
in all the worlds associated with s. But then a & b is true in all those 
worlds. That is, (a & b) is true in s.

Before we can get back to the question as to how this bears on 
Aristotle’s argument, we need to talk briefly about another 
logical operator that we have not yet met. Let us write ‘if a then b’ 
as .a b→  Sentences of this form are called conditionals, and will 
concern us a good deal in Chapter 7. All we need to note for the 
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present is that the major inference that conditionals seem to 
be involved in is this:

→a a b
b

(For example: ‘If she works out regularly then she is fit. She does 
work out regularly; so she is f it’.) Modern logicians usually call 
this inference by the name with which it was tagged by medieval 
logicians: modus ponens. Literally, this means ‘the method of 
positing’. (Don’t ask.)

Now, for Aristotle’s argument, we need to think a little about 
conditionals of the form:

if a then it cannot fail to be the case that b.

Such sentences are, in fact, ambiguous. One thing they can mean 
is that if a is, as a matter of fact, true, then b is necessarily true. 
That is, if a is true in the situation we are talking about, s, then b 
is true in all the possible situations associated with s. We can write 
this as → .a b�  The sentence is being used like this when we say 
things like: ‘You can’t change the past. If something is true of the 
past, it cannot now fail to be true. There is nothing you can 
do to make it otherwise: it’s irrevocable.’

The second meaning of a conditional of the form ‘If a then it 
cannot fail to be the case that b’, is quite different. We often use 
this form of words to express the fact that b follows from a. We 
would be using the sentence like this if we said something like ‘If 
Fred is going to be divorced then he cannot fail to be married’. 
We are not saying that if Fred is going to be divorced, his marriage 
is irrevocable. We are saying that you can’t get a divorce unless 
you are married. There is no possible situation in which you have 
the one, but not the other. That is, in any possible situation, if one 
is true, so is the other. That is, →( )a b�  is true.
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Now, →a b�  and →( )a b�  mean quite different things. And 
certainly, the first does not follow from the second. The mere fact 
that →a b is true in every situation associated with s, does not 
mean that →a b� is true in s; a could be true in s, whilst b is 
not—both b and a may fail to be true in some associated world. Or, 
to give a concrete counter-example: it is necessarily true that if John 
is getting a divorce, he is married; but it is certainly not true that if 
John is getting a divorce he is necessarily (irrevocably) married.

To come back to Aristotle’s argument at last, consider the sentence 
that I put in boldface: ‘if it is true to say that I will be involved in an 
accident then it cannot fail to be the case that I will be involved’. 
This is exactly of the form we have just been talking about. It is 
therefore ambiguous. Moreover, the argument trades on this 
ambiguity. If a is the sentence ‘It is true to say that I will be involved 
in a traffic accident’, and b is the sentence ‘I will be involved (in a 
traffic accident)’, then the boldface conditional is true in the sense:

1 →( )a b�

Necessarily, if it is true to say something, then that something is 
indeed the case. But what needs to be established is:

2 →a b�

After all, the next step of the argument is precisely to infer b 
from a by modus ponens. But as we have seen, 2 does not follow 
from 1 at all. Hence, Aristotle’s argument is invalid. For good 
measure, exactly the same problem arises in the second part of 
the argument, with the conditional ‘if it is true to say that I will 
not be involved in an accident then it cannot fail to be the case 
that I won’t be involved in an accident’.

This seems a satisfactory reply to Aristotle’s argument. But there 
is a closely related argument that cannot be answered so easily. 
Come back to the example we had about changing the past. It 
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does seem to be true that if some statement about the past is true, 
it is now necessarily true. It is impossible, now, to render it false. 
The Battle of Hastings was fought in 1066, and there is now 
nothing that one can do to make it have been fought in 1067. 
Thus, if p is some statement about the past, → .p p�

Now consider some statement about the future. Again, for 
example, let it be the claim that I will be involved in a traffic 
accident tomorrow. Suppose this is true. Then if someone uttered 
this sentence 100 years ago, they spoke truly. And even if no one 
actually uttered it, if anyone had uttered it, they would have 
spoken truly. Thus, that I will be involved in a traffic accident 
tomorrow was true 100 years ago. This statement (p) is certainly a 
statement about the past, and so, since true, necessarily true (p). 
So it must necessarily be true that I will be involved in a traffic 
accident tomorrow. But that was just an example; the same 
reasoning could be applied to anything. Thus, anything that 
happens, must happen. This argument for fatalism does not 
commit the same fallacy (that is, use the same invalid argument) 
as the first one that I gave. So is fatalism true after all? 

Main ideas of the chapter

• Each situation comes with a collection of associated possible 
situations.

• a is true in a situation, s, if a is true in every situation 
associated with s.

• ◊a is true in a situation, s, if a is true in some situation 
associated with s.
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In this chapter we’ll turn to the logical operator that I introduced 
in passing in Chapter 6, the conditional. Recall that a conditional 
is a sentence of the form ‘if a then c’, which we are writing  
as .a c→  Logicians call a the antecedent of the conditional, and 
c the consequent. We also noted that one of the most fundamental 
inferences concerning the conditional is modus ponens: →, / .a a c c  
Conditionals are fundamental to much of our reasoning. 
Chapter 6 showed just one example of this. Yet they are deeply 
puzzling. They have been studied in logic ever since its earliest 
times. In fact, it was reported by one ancient commentator 
(Callimachus) that at one time even the crows on the rooftops 
were cawing about conditionals.

Let us see why—or, at least, one reason why—conditionals are 
puzzling. If you know that a c→ , it would seem that you can 
infer that ¬( & ¬ )a c  (it is not the case that a and not c). Suppose, 
for example, that someone informs you that if you miss the bus, 
you will be late. You can infer from this that it is false that you 
will miss the bus and not be late. Conversely, if you know 
that ¬( & ¬ ),a c  it would seem that you can infer a c→  from this. 
Suppose, for example, that someone tells you that you won’t go to 
the movies without spending money (it’s not the case that you go 

Chapter 7
Conditionals: what’s in an if ?
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to the movies and do not spend money). You can infer that if 
you go to the movies, you will spend money.

 ¬( & ¬ )a c  is often written as ,a c⊃  and called the material 
conditional. Thus, it would appear that a c→ and a c⊃  
mean much the same thing. In particular, assuming the 
machinery of Chapter 2, they must have the same truth table. 
It is a simple exercise, which I leave to you, to show that this 
is as follows:

But this is odd. It means that if c is true in a situation (first and 
third rows), so is .a c→  This hardly seems right. It is true, for 
example, that Canberra is the federal capital of Australia, but the 
conditional ‘If Canberra is not the federal capital of Australia, 
Canberra is the federal capital of Australia’ seems plainly false. 
Similarly, the truth table shows us that if a is false (third and 
fourth rows), a c→  is true. But this hardly seems right either. 
The conditional ‘If Sydney is the federal capital of Australia, 
then Brisbane is the federal capital’ also appears patently false. 
What has gone wrong?

What these examples seem to show is that →  is not a truth 
function: the truth value of a c→  is not determined by the truth 
values of a and c. Both of ‘Rome is in France’ and ‘Beijing is in 
France’ are false; but it’s true that:

If Italy is part of France, Rome is in France.

a c ⊃a c

T T T

T F F

F T T

F F T
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While it’s false that:

If Italy is part of France, Beijing is in France.

So how do conditionals work?

One answer can be given using the machinery of possible 
worlds of Chapter 6. Consider the last two conditionals. In any 
possible situation in which Italy had become incorporated 
into France, Rome would indeed have been in France. But there 
are possible situations in which Italy was incorporated in France, 
but this had no effect on China at all. So Beijing was still not in 
France. This suggests that the conditional a c→  is true in some 
situation, s, just if c is true in every one of the possible situations 
associated with s in which a is true; and it is false in s if c is false 
in some possible situation associated with s in which a is true.

This gives a plausible account of →. For example, it shows why 
modus ponens is valid—at least on one assumption. The assumption 
is that we count s itself as one of the possible situations associated 
with s. This seems reasonable: anything that is actually the case 
in s is surely possible. Now, suppose that a and a c→  are true 
in some situation, s. Then c is true in all situations associated 
with s in which a is true. But s is one of those situations, and a 
is true in it. Hence, so is c, as required.

Going back to the argument with which we started, we can 
now see why it fails. The inference on which the argument 
depends is:

¬(a & ¬c)
a → c

And this is not valid. For example, if a is F in some situation, s, 
this suffices to make the premiss true in s. But this tells us nothing 
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about how a and c behave in the possible situations associated 
with s. It could well be that in one of these, say ś , a is true and c 
is not, like this:

s
a : F

c : F

s′
a : T

c : F

So a c→  is not true at s.

What about the example we had earlier, where you are informed 
that you won’t go to the movies without spending money? Didn’t 
the inference seem valid in this case? Suppose you know that 
you won’t go to the movies without spending money: ¬( & ¬ ).g m  
Are you really entitled to conclude that if you go to the movies 
you will spend money: ?g m→  Not necessarily. Suppose you are 
not going to go to the movies, come what may, even if admission 
is free that night. (There is a programme on the television that is 
much more interesting.) Then you know that it is not true 
that you will go (¬g), and so that it is not true that you will go 
and not spend money: ¬( & ¬ ).g m  Are you then entitled to infer 
that if you go you will spend money? Certainly not: it may be 
a free night.

It is important to note that in the kind of situation where you 
learn that the premiss is true by being informed of it, other 
factors are usually operating. When someone tells you something 
like ¬( & ¬ ),g m they do not normally do this on the basis that they 
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know that ¬g is true. (If they knew this, there wouldn’t normally 
be a point in telling you anything much about the situation.) If 
they tell you this, it is on the basis that there is some connection 
between g and m: that you can’t have g true without m being 
true—and that is exactly what it takes for the conditional to be 
true. So in the case where you are informed of the premiss, it 
would normally be reasonable to infer ;g m→  but not from 
the content of what was said—rather, from the fact that it 
was said.

In fact, we often correctly make inferences of this kind without 
thinking. Suppose, for example that I ask someone how to get my 
computer to do something or other, and they reply ‘There is a 
manual on the shelf ’. I infer that it is a computer manual. This 
does not follow from what was actually said, but the remark 
would not have been relevant unless the manual was a computer 
manual, and people are normally relevant in what they say. 
Hence, I can conclude that it is a computer manual from the fact 
that they said what they did. The inference is not deductively 
valid. After all, the person could have said this, and it not be a 
computer manual (Figure 7). But the inference is still an excellent 
inductive inference. It is of a kind usually called conversational 
implicature.

The account of the conditional that we have just been looking 
at seems to fare well—at least as far as we have looked. It faces a 
number of problems, though. Here is one. Consider the following 
inferences:

If you go to Rome you will be in Italy.
If you are in Italy, you are in Europe.
Hence, if you go to Rome, you will be in Europe.

If x is greater than 10 then x is greater than 5.
Hence, if x is greater than 10 and less than 100, then x is 
greater than 5.
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These inferences seem perfectly valid, and so they are on the 
present account. We can write the first inference as:

1 → →
→

a b b c
a c

To see that this comes out valid, suppose the premisses are true in 
some situation, s. Then b is true in every possible situation 
associated with s where a is true; and likewise, c is true in every 
associated situation where b is. So c is true in every such situation 
where a is true. That is, a c→  is true in s.

7. Jumping to conclusions.
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We can write the second inference as:

2 
→

→( & )
a c

a b c

To see that this comes out valid, suppose the premiss is true in 
some situation, s. Then c is true in every possible situation 
associated with s where a is true. Now, suppose a & b is true in an 
associated situation; then a is certainly true in that situation, and 
hence c is. Hence, ( & )a b c→  is true in s.

So far so good. The problem is that there are inferences that are 
exactly of these forms, but which appear to be invalid. For 
example, suppose that there is an election for Prime Minister with 
only two candidates, Smith, the present Prime Minister, and 
Jones. Now consider the following inference:

If Smith dies before the election, Jones will win. If Jones 
wins the election, Smith will retire and take her pension. 
Hence, if Smith dies before the election, she will retire and 
take her pension.

This is exactly an inference of the form 1. But it seems clear that 
there could be a situation in which both premisses are true. But not 
the conclusion—unless we are considering a bizarre situation in 
which the government can effect pension payments in the after-life!

Or consider the following inference concerning said Smith:

If Smith jumps from the top of a tall precipice, she will die 
from the fall. Hence, if Smith jumps from the top of a tall 
precipice and wears a parachute, she will die from the fall.

This is an inference of the form 2. Yet, again, it would seem clear 
that there could be situations where the premiss is true and the 
conclusion is not.
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What is one to say about this state of affairs? I’ll leave you to think 
about that. Despite the fact that conditionals are central to how 
we reason about most things, they are still one of the most 
contentious areas of logic. If birds are no longer crowing about 
conditionals, logicians certainly are.

Main idea of the chapter

• →a b  is true in a situation, s, just if b is true in every situation 
associated with s where a is true.
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Time is something that we are all very familiar with. We plan to 
do things in the future; we remember things in the past; and 
sometimes we enjoy just being in the present. And part of our 
finding our way around in time is making inferences that 
concern time. For example, the two following inferences are 
intuitively valid:

It is raining. It will be true that it has always been raining.
It is raining.It will have been raining.

All this seems elementary.

But as soon as one starts to think about time, one seems to get 
tangled in knots. As Augustine said, if no one asks me what time 
is, then I know very well; but when someone asks me, I cease to 
know. One of the most puzzling things about time is that it 
seems to flow. The present seems to move: first it is today; then 
it is tomorrow; and so on. But how can time change? Time is 
what measures the rate at which everything else changes. This 
problem is at the heart of several conundrums concerning time. 
One such was put forward, early in the 20th century, by the 
British philosopher John McTaggart Ellis McTaggart. (That’s 
right.) Like many philosophers, McTaggart was tempted by the 

Chapter 8
The future and the past:  
is time real?
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view that time is unreal—that, in the ultimate order of things, 
time is an illusion.

To explain McTaggart’s argument for this, it will help to have a 
little symbolism. Take a past-tense sentence, such as ‘The sun was 
shining’. We can express this equivalently, if a little awkwardly, 
as ‘It was the case that the sun is shining’. Let us write ‘It was the 
case that’ as P (for ‘past’). Then we can write this sentence as 
‘P the sun is shining’, or, writing s for ‘The sun is shining’, simply Ps. 
Similarly, take any future tense sentence, say, ‘The sun will be 
shining’. (Strictly speaking, grammarians will tell you, English 
has no proper future tense, unlike French or Latin. But you know 
what I mean.) We can write this as ‘It will be the case that the 
sun is shining’. If we write ‘It will be the case that’ as F (for 
‘future’), then we can write this as Fs. (Don’t confuse this F 
with the truth value F.)

P and F are operators, like  and ◊, that affix to whole sentences 
to make whole sentences. Moreover, like  and ◊, they are not 
truth functions. ‘It is 4 p.m.’ and ‘It is 4 p.m. on 2nd August 1999’ 
are both true (at the instant I write); ‘It will be 4 p.m.’ is also true 
(at the present instant)—it is 4 p.m. once every day—though ‘It 
will be 4 p.m., 2nd August 1999’ is not. Logicians call P and F 
tense operators. Tense operators can be iterated, or compounded. 
For example, we can say ‘The sun will have been shining’, that is, 
‘It will be the case that it was the case that the sun is shining’: FPs. 
Or we can say ‘The sun had been shining’, that is, ‘It was the case 
that it was the case that the sun is shining’: PPs. (The modal 
operators that we met in Chapter 7 can also be iterated in this 
way, though we did not consider this there.) Not all iterations of 
tense operators have snappy English expressions. For example, 
there is not a much better way to express FPFs than as the rather 
lame ‘It will be the case that it was the case that the sun will be 
shining’. The iterations, though, make perfectly good grammatical 
sense. We can call iterations of P and F, like FP, PP, FFP, 
compound tenses.
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Now, back to McTaggart. McTaggart reasoned that there would be 
no time if there were no past and future: these are of its essence. 
Yet pastness and futurity, he argued, are inherently contradictory; 
so nothing in reality can correspond to them. Well, maybe. But 
why are past and future contradictory? For a start, past and 
future are incompatible. If some instantaneous event is past, it is 
not future, and vice versa. Let e be some instantaneous event. It 
can be anything you like, but let us suppose that it is the passing 
of the first bullet through the heart of Czar Nicholas in the 
Russian Revolution. Let h be the sentence ‘e is occurring’. Then 
we have:

¬(  & )h hP F

But e, like all events, is past and future. Because time flows, all 
events have the property of being future (before they happen) 
and the property of being past (after they happen):

 &h hP F

So we have a contradiction.

This argument isn’t likely to persuade anyone for very long. 
An event can’t be past and future at the same time. The instant 
the bullet passed through the Czar’s heart was past and future 
at different times. It started off as future; became present 
for a painful instant; and then was past. But now—and this 
is the cunning part of McTaggart’s argument—what are we 
saying here? We are applying compound tenses to h. We 
are saying that it was the case that the event was future, 
PFh; then it was the case that it was past, PPh. Now, many 
compound tenses, like simple tenses, are incompatible. For 
example, if any event will be future, it is not the case that it 
was past:

¬( & )h hPP FF
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But, just as with the simple tenses, the flow of time suffices to 
ensure that all events have all compound tenses too. In the past, 
Fh; so in the distant past FFh. In the future, Ph; so in the distant 
future, PPh:

&h hPP FF

And we are back with a contradiction.

Those who have kept their wits about them will reply, just as 
before, that h has its compound tenses at different times. It was 
the case that FFh; then, later on, it was the case that PPh. But 
what are we saying here? We are applying more complex 
compound tenses to h: PFFh and PPPh; and we can run exactly 
the same argument again with these. These compound tenses are 
not all consistent with each other, but the flow of time ensures 
that h possesses all of them. We may make the same reply again, 
but it, too, is open to the same counter-reply. Whenever we try to 
get out of the contradiction with one set of tenses, we do so only 
by describing things in terms of other tenses that are equally 
contradictory; so we never escape contradiction. That is 
McTaggart’s argument.

What is one to say about this? To answer this, let us look at the 
validity of inferences concerning tenses. To account for this, we 
suppose that every situation, s0, comes together with a bunch 
of other situations—not, this time, situations that represent 
possibilities associated with s0 (as with modal operators), but 
situations that are either before s0 or after s0. Assuming, as we 
normally do, that time is one-dimensional and infinite in both 
directions, past and future, we can represent the situations 
in a familiar way:

− − −3 2 1 0 1 2 3 .. . . .. s s s s s s s
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Left is earlier; right is later. As usual, each s provides a truth 
value, T or F, for every sentence without tense operators. 
What about sentences with tense operators? Well, Pa is T in 
any situation, s, just if a is true in some situation to the left 
of s; and Fa is true in s just if a is true in some situation to 
the right of s.

While we are doing all this, we can add two new tense operators, 
G and H. G can be read ‘It is always Going to be the case that’, and 
Ga is true in any situation, s, just if a is true in all situations to the 
right of s. H can be read as ‘It Has always been the case that’, and 
Ha is true in any situation, s, just if a is true in all situations to 
the left of s. (G and H correspond to F and P, respectively, in just 
the way  that corresponds to ◊.)

This machinery shows us why the two inferences with which we 
started the chapter are valid. Employing tense operators, these 
inferences can be written, respectively, as:

r r
r r

FH
FP

The first inference is valid, since if r is true in some situation, s0, 
then in any situation to the right of s0, say s1, Pr is true (since s0 is 
to its left). But then, FPr is true in s0, since s1 is to its right. We 
can depict things like this:

− − −3 2 1 0 1 2 3 . . .. . . s s s s s s s
r

r
r

P
FP

The second inference is valid, since if FHr is true in s0, then 
in some situation to the right of s0, say s2, Hr is true. But 
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then in all situations to the left of s2, and so in particular s0, 
r is true:

− − −3 2 1 0 1 2 3 .. .. .. s s s s s s s
r

r
r r r r r

FH
H

Moreover, certain combinations of tenses are impossible, as 
one would expect. Thus, if h is a sentence that is true in just one 
situation, say s0, then Ph & Fh is false in every s. Both conjuncts 
are false in s0; the first conjunct is false to the left of s0; the second 
conjunct is false to the right. Similarly, e.g., PPh & FFh is false 
in every s. I leave you to check the details.

Now, how does all this bear on McTaggart’s argument? The 
upshot of McTaggart’s argument, recall, was that, given that h has 
every possible tense, it is never possible to avoid contradiction. 
Resolving contradictions in one level of complexity for compound 
tenses only creates them in another. The account of the tense 
operators that I have just given, shows this to be false. Suppose 
that h is true in just s0. Then any statement with a compound 
tense concerning h is true somewhere. For example, consider 
FPPFh. This is true in s−2, as the following diagram shows:

− − −3 2 1 0 1 2 3. . . . . .s s s s s s s
h

h
h

h
h

F
PF

PPF
FPPF

Clearly, we can do the same for every compound tense composed 
of F and P, zigzagging left or right, as required. And all this is 
perfectly consistent. The infinitude of different situations allows 
us to assign h all its compound tenses in appropriate places 
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without violating the various incompatibilities between them, 
e.g., by having Fh and Ph true in the same situation. McTaggart’s 
argument, therefore, fails.

This is a happy outcome for those who wish to believe in the 
reality of time. But those who agree with McTaggart might yet not 
be persuaded by our considerations. Suppose I give you a set of 
specifications for constructing a house: the front door goes here; 
a window here. . . . How do you know that all the specifications 
are consistent? How do you know that, when you perform the 
construction, everything will work out, and that you will not be 
required, for example, to put the door in incompatible positions? 
One way to determine this is to build a scale model in accordance 
with all the specifications. If such a model can be built, the 
specifications are consistent. That is exactly what we have done 
with our tensed talk. The model is the sequence of situations, 
together with the way of assigning T and F to tensed sentences. 
It is a little more abstract than a model of a house, but the 
principle is essentially the same.

It may be possible to object to a model, though. Sometimes a 
model will ignore important things. For example in a scale model 
of a house, a beam may not collapse, because it bears a lot less 
stress than the corresponding beam would in a full-scale 
construction. The full-scale beam may be required to take an 
impossible load, making the full-scale building impossible—the 
model notwithstanding. Similarly, it may be suggested that our 
model of time ignores important things. After all, what we have 
done is give a spatial model of time (left, right, etc.). But space 
and time are quite different things (Figure 8). Space does not flow 
in the way that time does (whatever, indeed, that might mean). 
Now, it is exactly the flow of time that produces the supposed 
contradiction that McTaggart was pointing to. No wonder this 
does not show up in the model! Exactly what, then, is missing 
from the model? And once that is taken into account, does the 
contradiction reappear?
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8. For Dr Who, anyway, space and time are much the same thing.

Main ideas of the chapter

•  Every situation comes with an associated collection of earlier 
and later situations.

• Fa is true in a situation if a is true in some later situation.

• Pa is true in a situation if a is true in some earlier situation.

• Ga is true in a situation if a is true in every later situation.

• Ha is true in a situation if a is true in every earlier situation.
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We have not finished with time yet. Time is involved in various 
other conundrums, one kind of which we will look at in this 
chapter. This kind concerns problems that arise when things 
change; and specifically, the question of what is to be said about 
the identity of objects that change through time.

Here is an example. We all think that objects can survive through 
change. For example, when I paint a cupboard, although its colour 
may change, it is still the same cupboard. Or when you change 
your hairstyle, or if you are unfortunate enough to lose a limb, 
you are still you. But how can anything survive change? After 
all, when you change your hairstyle, the person that results is 
different, not the same at all. And if the person is different, it 
is a different person; so the old you has gone out of existence. 
In exactly the same way, it may be argued, no object persists 
through any change whatsoever. For any change means that 
the old object goes out of existence, and is replaced by a quite 
different object.

Arguments like this appear at various places in the history of 
philosophy, but it would be generally agreed by logicians, now, 
that they are mistaken, and rest on a simple ambiguity. We must 
distinguish between an object and its properties. When we say 
that you, with a different hairstyle, are different, we are saying that 

Chapter 9
Identity and change: is 
anything ever the same?
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you have different properties. It does not follow that you are 
literally a different person, in the way that I am a different person 
from you.

One reason why one may fail to distinguish between being a 
certain object and having certain properties is that, in English, the 
verb ‘to be’ and its various grammatical forms—‘is’, ‘am’, and so 
on—can be used to express both of these things. (And the same 
goes for similar words in other languages.) If we say ‘The table is 
red’, ‘Your hair is now short’, and similar things, we are attributing 
a property to an object. But if someone says ‘I am Graham Priest’, 
‘The person who won the race is the same person who won it last 
year’, and so on, then they are identifying an object in a certain 
way. That is, they are stating its identity.

Logicians call the first use of ‘is’ the ‘is’ of predication; they call 
the second use of ‘is’ the ‘is’ of identity. And because these have 
somewhat different properties, they write them in different 
ways. The ‘is’ of predication we have already met in Chapter 3. 
‘John is red’ is typically written in the form jR, so the ‘is’ is 
incorporated in the predicate. (Actually, as I noted in Chapter 3, 
it is more common to write this the other way round, as Rj.) 
The ‘is’ of identity is written with =, familiar from school 
mathematics. Thus, ‘John is the person who won the race’ is 
written: .j w=  (The name w is a description here; but this is of 
no significance in the present matter.) Sentences like this are 
called identities.

What properties does identity have? First, it is a relation. A relation 
is something that relates two objects. For example, seeing is a 
relation. If we say ‘John sees Mary’ we are stating a relation 
between them. The objects related by a relation do not necessarily 
have to be different. If we say ‘John sees himself ’ (maybe in a 
mirror), we are stating a relation that John bears to John. Now, 
identity is a very special relation. It is a relation that every object 
bears to itself and to nothing else.
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You might think that this would make identity a rather useless 
relation, but, in fact, this is not so. For example, if I say ‘John is the 
person who won the race’, I am saying that the relation of identity 
holds between the object referred to by ‘John’ and the object 
referred to by ‘the person who won the race’—in other words, that 
these two names refer to one and the same person. This can be a 
highly significant piece of information.

The most important things about identity, though, are the 
inferences that it is involved in. Here is an example:

John is the person who won the race.
The person who won the race got a prize.
So John got a prize.

We can write this as:

j w wP
jP

=

This inference is valid in virtue of the fact that, for any objects, x 
and y, if x = y, then x has any properties that y has, and vice versa. 
One and the same object either has the property in question, or 
it doesn’t. This is usually called Leibniz’s Law, after Leibniz 
(Figure 9), whom we met in Chapter 6. In an application of 
Leibniz’s Law, one premiss is an identity statement, say ;m n=  
the second premiss is a sentence containing one of the names that 
flanks the identity sign, say m; and the conclusion is obtained 
by substituting n for m in this.

Leibniz’s Law is a very important one, and has many quite 
unproblematic applications. For example, high school algebra 
assures us that 2 2( )( ) .x y x y x y+ − = −  So if you are solving a 
problem, and establish that, say, − =2 2 0,x y  you can apply 
Leibniz’s Law to infer that + − =( )( )  0.x y x y  Its deceptive 
simplicity hides a multitude of problems, though. In particular, 
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there seem to be many counter-examples to it. Consider, for 
example, the following inference:

John is the person who won the race.
Mary knows that the person who won the race got a prize.
So Mary knows that John got a prize.

This looks like an application of Leibniz’s Law since the conclusion 
is obtained by substituting ‘John’ for ‘the person who won the 
race’ in the second premiss. Yet it is clear that the premisses could 
well be true without the conclusion being true: Mary might not 
know that John is the person who won the race. Is this a violation 
of Leibniz’s Law? Not necessarily. The Law says that if x = y 
then any property of x is a property of y. Now, does the condition 

9. Gottfried Wilhelm Leibniz (1646–1716), the last notable logician 
before the modern period.
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‘Mary knows that x got a prize’ express a property of x? Not really: 
it would seem, rather, to express a property of Mary. If Mary were 
suddenly to go out of existence, this would not change x at all! 
(The logic of phrases such as ‘knows that’ is still very much sub 
judice in logic.)

Another sort of problem is as follows. Here is a road; it is a tarmac 
road; call it t. And here is a road; it is a dirt road; call it d. The two 
roads, though, are the same road, t = d. It is just that the tarmac 
runs out towards the end of the road. So Leibniz’s Law tells us that 
t is a dirt road, and d is a tarmac road—which they are not. What 
has gone wrong here? We cannot say that being dirt or tarmac are 
not really properties of the road. They certainly are. What has 
gone wrong (arguably) is this: we are not being precise enough in 
our specification of properties. The relevant properties are being 
tarmac at such and such a point, and being dirt at such and such a 
point. Since t and d are the same road, they have both properties, 
and we do not have a violation of Leibniz’s Law.

So far so good. These problems are relatively easy. Let’s now have 
one that isn’t. And here, time comes back into the issue. To explain 
what the problem is, it will be useful to employ the tense operators 
of Chapter 8, and specifically, G (‘it is always going to be the case 
that’). Let x be anything you like, a tree, a person; and consider the 
statement x = x. This says that x has the property of being identical 
to x—which is obviously true: it’s part of the very meaning of 
identity. And this is so, regardless of time. It is true now, true at all 
times future, and true at all times past. In particular, then, G x = x 
is true. Now, here is an instance of Leibniz’s Law:

x y x x
x y

= =
=

G
G

(Don’t let the fact that we have substituted y for only one of 
the occurrences of x in the second premiss throw you. Such 
applications of Leibniz’s Law make perfectly good sense. 
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Just consider: ‘John is the person who won the race; John sees 
John; so John sees the person who won the race’.) What the 
inference shows is that if x is identical to y, and x has the property 
of being identical to x at all future times, so does y. And since the 
second premiss is true, as we have just noted, it follows that if 
two things are identical, they will always be identical.

And what of that? Simply, it doesn’t always seem to be true. For 
example, consider an amoeba. Amoebas are single-celled water 
creatures that multiply by fission: an amoeba will split down the 
middle to become two amoebas. Now, take some amoeba, A, 
that divides to become two amoebas, B and C. Before the split, 
both B and C were A. So before the split, B = C. After the split, 
though, B and C are distinct amoebas, ¬B = C. So if two things 
are the same, it does not necessarily follow that they are always 
going to be the same.

We can’t get out of this problem in the same way that we got out of 
the previous ones. The property of being identical to x at all future 
times is certainly a property of x. And it doesn’t appear to be the 
case that the property is insufficiently fine-grained. There seems 
to be no way to make it more precise to avoid the problem.

What else can one say? A natural thought is this. Before the split, 
B wasn’t A: it was only part of A. But B is an amoeba, and A is a 
single-celled creature: it has no parts that are amoebas. So B can’t 
be part of A.

More radically, one might suggest that B and C did not really exist 
before the split, that they came into existence then. If they did 
not exist before the split, then they were not A before the split. So 
it’s not the case that B = C before the split. But that seems wrong 
too. B is not a new amoeba; it is simply A, though some of its 
properties have changed. If this is not clear, just imagine that C 
were to die at the split. In this case, we would have no hesitation 
in saying that B is A. (It would just be like a snake shedding its 
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skin.) Now, the identity of something can’t be affected by whether 
there are other things around. So A is B. Likewise, A is C.

Of course, one might insist that just because A takes on new 
properties, it is, strictly speaking, a new object; not merely an 
old object with new properties. So B is not really A. Likewise C. 
But now we are back with the problem with which we started 
the chapter.

Main ideas of the chapter

•  m = n is true just if the names m and n refer to the same 
object.

•  If two objects are the same, any property of one is a property 
of the other (Leibniz’s Law).
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While we are on the subject of identity, here is another problem 
about it. Everything wears out in time. Sometimes, parts get 
replaced. Motor bikes and cars get new clutches; houses get new 
roofs; and even the individual cells in people’s bodies are replaced 
over time. Changes like this do not affect the identity of the 
object in question. When I replace the clutch on my bike, it remains 
the same bike. Now suppose that over a period of a few years, 
I replace every part of the bike, Black Thunder. Being a careful 
fellow, I keep all the old parts. When everything has been 
replaced, I put all the old parts back together to recreate the 
original bike. But I started off with Black Thunder; and changing 
one part on a bike does not affect its identity: it is still the same 
bike. So at each replacement, the machine is still Black Thunder; 
until, at the end, it is—Black Thunder. But we know that that 
can’t be right. Black Thunder now stands next to it in the 
garage (Figure 10).

Here is another example of the same problem. A person who is 
5 years old is a (biological) child. If someone is a child, they are 
still a child one second later. In which case, they are still a child 
one second after that, and one second after that, and one second 
after that. . . . So after 630,720,000 seconds, they are still a child. 
But then they are 25 years old!

Chapter 10
Vagueness: how do you  
stop sliding down a  
slippery slope?
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10. A bike-rider’s dilemma.

Arguments like this are reputed to have been invented by 
Eubulides, the same Eubulides who invented the liar paradox of 
Chapter 5. They are now called sorites paradoxes. (A standard 
form of the argument is to the effect that by adding one grain of 
sand at a time, one can never form a heap; ‘sorites’ comes from 
‘soros’, the Greek for heap.) These are some of the most annoying 
paradoxes in logic. They arise when the predicate employed 
(‘is Black Thunder’, ‘is a child’) is vague, in a certain sense; that 
is, when its applicability is tolerant with respect to very small 
changes: if it applies to an object, then a very small change in the 
object will not alter this fact. Virtually all of the predicates that 
we employ in normal discourse are vague in this sense: ‘is red’, 
‘is awake’, ‘is happy’, ‘is drunk’—even ‘is dead’ (dying takes time). 
Thus, slippery slope arguments of the sorites kind are potentially 
endemic in our reasoning.

To focus the issue concerning them, let us look at one of these 
arguments in more detail. Let Jack be the 5-year-old child. Let a0 
be the sentence ‘Jack is a child after 0 seconds’. Let a1 be the 
sentence ‘Jack is a child after 1 second’, and so on. If n is any 
number, an is the sentence ‘Jack is a child after n seconds’. Let k be 
some enormous number, at least as great as 630,720,000. We 
know that a0 is true. (After 0 seconds have elapsed, Jack is still 5.) 
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And for each number, n, we know that an → an+1. (If Jack is a 
child at any time, he is a child one second later.) We can chain 
all these premisses together by a sequence of modus ponens 
inferences, like this:

a0 a0 → a1
a1 a1 → a2

a2

⋱
ak−1 ak−1 → ak

ak

The final conclusion is ak, which we know not to be true. 
Something has gone wrong, and there doesn’t seem much scope 
to manoeuvre.

So what are we to say? Here is one answer, which is 
sometimes called fuzzy logic. Being a child seems to fade out, 
gradually, just as being a (biological) adult seems to fade in 
gradually. It seems natural to suppose that the truth value of 
‘Jack is a child’ also fades from true to false. Truth, then, comes 
by degrees. Suppose we measure these degrees by numbers 
between 1 and 0, 1 being complete truth, 0 complete falsity. 
Every situation, then, assigns each basic sentence such  
a number.

What about sentences containing operators like negation and 
conjunction? As Jack gets older, the truth value of ‘Jack is a child’ 
goes down. The truth value of ‘Jack is not a child’ would seem to 
go up correspondingly. This suggests that the truth value of ¬a is 
1 minus the truth value of a. Suppose we write the truth value of a 
as |a|; then we have:

|¬a| = 1−|a|
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Here is a table of some sample values:

What about the truth value of conjunctions? A conjunction can 
only be as good as its worst bit. So it’s natural to suppose that the 
truth value of a & b is the minimum (lesser) of |a| and |b|:

|a & b|=Min(|a|,|b|)

Here is a table of some sample values. Values of a are down 
the left hand column; values of b are along the top row. The 
corresponding values of a & b are where the appropriate row 
and column meet. For example, if we want to find |a & b|, where 
|a| = 0.25 and |b| = 0.5, we see where the italicized row and column 
meet. The result is in boldface.

a ¬a

1 0

0.75 0.25

0.5 0.5

0.25 0.75

0 1

a & b 1 0.75 0.5 0.25 0

1 1 0.75 0.5 0.25 0

0.75 0.75 0.75 0.5 0.25 0

0.5 0.5 0.5 0.5 0.25 0

0.25 0.25 0.25 0.25 0.25 0

0 0 0 0 0 0
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Similarly, the value of a disjunction is the maximum (greater) 
of the values of the disjuncts:

|a∨b| = Max(|a|,|b|)

I leave it to you to construct a table of some sample values. Notice 
that, according to the above, ¬, &, and ∨ are still truth functions. 
That is, for example, the truth value of a & b is determined by the 
truth values of a and b. It is just that those values are now numbers 
between 0 and 1, instead of T and F. (It is perhaps worth noting, 
though, that if we think of 1 as T, and 0 as F, the results where 
only 1 and 0 are involved are the same as for the truth functions 
of Chapter 2, as you can check for yourself.)

What of conditionals? We saw in Chapter 7 that there are good 
reasons to suppose that → is not a truth function, but let us 
set those worries aside for the present. If it is a truth function, 
which one is it, now that we have to take into account degrees 
of truth? No answer seems terribly obvious. Here is one (fairly 
standard) suggestion, which at least seems to give the right 
sorts of results.

If |a|≤|b|: |a→b|=1

If |b|<|a|: |a→b|=1−(|a|−|b|)

(< means ‘is less than’; ≤ means ‘is less than or equal to’.) Thus, if the 
antecedent is less true than the consequent, the conditional is 
completely true. If the antecedent is more true than the consequent, 
then the conditional is less than the maximal truth by the difference 
between their values (i.e. by the amount that truth goes down). 
Here is a table of some sample values. (Recall that the values 
of a are down the left-hand column and those of b are along the 
top row.)
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What of validity? An inference is valid if the conclusion holds in 
every situation where the premisses hold. But what is it now for 
something to hold in a situation? When it is true enough. But 
how true is true enough? That will just depend on the context. 
For example, ‘is a new bike’ is a vague predicate. If you go to a 
bike dealer who tells you that a certain bike is new, you expect 
it never to have been used before. That is, you expect ‘This is a 
new bike’ to have value 1. Suppose, on the other hand, that you 
go to a bike rally, and are asked to pick out the new bikes. You 
will pick out the bikes that are less than a year or so old. In 
other words, your criterion for what is acceptable as a new 
bike is more lax. ‘This is a new bike’ need have value only, 
say, 0.9 or greater.

So we suppose that there is some level of acceptability, fixed by 
the context. This will be a number somewhere between 0 and  
1—maybe 1 itself in extreme cases. Let us write this number as ε. 
Then an inference is valid for that context just if the conclusion 
has a value at least as great as ε in every situation where the 
premisses all have values at least as great as ε.

Now, how does all this bear on the sorites paradox? Suppose we 
have a sorites sequence. As above, let an be the sentence ‘Jack is 
a child after n seconds’; but to keep things manageable, let us 

a → b 1 0.75 0.5 0.25 0

1 1 0.75 0.5 0.25 0

0.75 1 1 0.75 0.5 0.25

0.5 1 1 1 0.75 0.5

0.25 1 1 1 1 0.75

0 1 1 1 1 1
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suppose that Jack grows up in four seconds! Then a record of 
truth values might be:

a0 → a1 has value 0.75 (= (1− (1 − 0.75)); so does a1 → a2; in fact, 
every conditional of the form an → an+1 has the value 0.75.

What this tells us about the sorites paradox depends on the level 
of acceptability, ε, that is in force here. Suppose the context is one 
that imposes the highest level of acceptability; ε is 1. In this case, 
modus ponens is valid. For suppose that |a| = 1 and |a → b| = 1. 
Since |a → b| = 1, we must have |a| ≤ |b|. It follows that |b| = 1. 
Thus the sorites argument is valid. In this case, though, each 
conditional premiss, having value 0.75, is unacceptable.

If, on the other hand, we set the level of acceptability lower than 1, 
then modus ponens turns out to be invalid. Suppose, for the sake of 
illustration, that ε is 0.75. As we have already seen, a1 and a1 → a2 
both have value 0.75, but a2 has value 0.5, which is less than 0.75.

Either way you look at it, then, the argument fails. Either some of 
the premisses aren’t acceptable; or, if they are, the conclusions 
don’t follow validly. Why are we taken in by sorites arguments 
so easily? Maybe because we confuse complete truth with 
near-complete truth. A failure to draw the distinction doesn’t 
make much difference normally. But if you do it again, and 
again, and again . . . it does.

That’s one diagnosis of the problem. But with vagueness, nothing 
is straightforward. What was the problem about saying that ‘Jack 
is a child’ is simply true, until a particular point in time, when it 
becomes simply false? Just that there seems to be no such point. 

a0 a1 a2 a3 a4

1 0.75 0.5 0.25 0
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Any place one chooses to draw the line is completely arbitrary; it 
can be, at best, a matter of convention. But now, at what point in 
Jack’s growing up does he cease to be 100 per cent a child; that is, 
at what point does ‘Jack is a child’ change from having the value of 
exactly 1, to a value below 1? Any place one chooses to draw this 
line would seem to be just as arbitrary as before. (This is sometimes 
called the problem of higher-order vagueness.) If that is right, 
we haven’t really solved the most fundamental problem about 
vagueness: we have just relocated it.

Main ideas of the chapter

• Truth values are numbers between 0 and 1 (inclusive).

• |¬a| = 1 − |a|

• |a ∨ b| = Max(|a|, |b|)

• |a & b| = Min(|a|, |b|)

• |a → b| = 1 if |a| ≤ |b|; |a → b| = 1 − (|a| − |b|) otherwise.

• A sentence is true in a situation just if its truth value is at least 
as great as the (contextually determined) level of acceptability.
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The preceding chapters have given us at least some feel for 
which inferences are deductively valid, and why. It’s now time 
to come back to the question of inductive validity: that is, the 
validity of those inferences where the premisses give some 
ground for the conclusion; yet where, even if the premisses 
are true in some situation, the conclusion could still turn out 
to be false.

As I noted in Chapter 1, Sherlock Holmes was very good at this 
kind of inference. Let us start with an example from him. The 
mystery of The Red-Headed League commences when Holmes and 
Dr Watson receive a visit from a certain Mr Jabez Wilson. When 
Wilson enters, Watson looks to see what Holmes has inferred 
about him (Figure 11):

‘Beyond the obvious fact that he has at some time done manual 

labour, that he takes snuff, that he is a Freemason, that he has been 

in China, and that he has done a considerable amount of writing 

lately, I can deduce nothing else.’

Mr. Jabez Wilson started up in his chair with his forefinger upon 

the paper, but his eyes upon my companion.

‘How, in the name of good fortune, did you know all that, 

Mr. Holmes?’ he asked.

Chapter 11
Probability: the strange case 
of the missing reference class
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Holmes is pleased to explain. For example, concerning the 
writing:

‘What else can be indicated by that right cuff so very shiny for five 

inches, and the left one with the smooth patch near the elbow 

where you rest it upon the desk.’

Despite the fact that Holmes is wont to call this kind of inference 
a deduction, the inference is, in fact, an inductive one. It is entirely 
possible that Wilson’s coat should have shown these patterns 
without his having done much writing. He could, for example, 
have stolen it from someone who had. None the less, the 
inference is clearly a pretty good one. What makes it, and 
inferences like it, good? One plausible answer is in terms of 
probability. So let’s talk about this, and then we can return to 
the question.

A probability is a number assigned to a sentence, which measures 
how likely it is, in some sense, that the sentence is true. Let us 

11. Holmes displays his logical prowess.
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write pr(a) for the probability of a. Conventionally, we measure 
probabilities on a scale between 0 and 1. If ( ) = 0,pr a  a is certainly 
false; then as pr(a) increases, it gets more likely that a is true; 
until when ( ) = 1,pr a  a is certainly true.

What else can one say about these numbers? Let me illustrate 
with a simple example. Suppose we consider the days of any one 
particular week. Let w be a sentence that is either true or false every 
day—say, ‘It is warm’—and let r be another—say, ‘It is raining’. Let 
the relevant information be given by the following table:

A tick indicates that the sentence is true that day; a blank that 
it is not.

Now, if we are talking about this particular week, what is the 
probability that on any day, chosen at random, it was warm? 
There were four warm days, and seven days in total. So the 
probability is 4/7. Similarly, there were three days where it 
rained, so the probability that it rained is 3/7:

( ) = 4/7
( ) = 3/7

pr w
pr r

In general, if we write #a to mean the number of days at which the 
sentence a is true, and N for the total number of days:

( ) =# /pr a a N

How does probability relate to negation, conjunction, and 
disjunction? Negation first. What is the probability of ¬ ?w Well, 

 Mon Tue Wed Thu Fri Sat Sun

w   ✓ ✓  ✓ ✓

r  ✓ ✓   ✓  
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there were three days on which it was not warm, so (¬ ) = 3/ 7.pr w  
Notice that pr(w) and (¬ )pr w add up to 1. This is no accident. 
We have:

# +#¬ =w w N

Dividing both sides by N, we get:

# #¬
+ = 1

w w
N N

That is, ( ) + (¬ )=1.pr w pr w

For conjunction and disjunction: there are two days on which 
it was both warm and rainy, so ( & ) =#( & )/ = 2 /7.pr w r w r N  
And there are five days on which it was either warm or rainy, 
so ∨ ∨( ) =#( )/ = 5/7.pr w r w r N  What is the relation between 
these two numbers? To find the number of days when ∨w r is 
true, we can start by adding up the days when w is true, then 
add the number of days where r is true. This won’t quite do, 
since some days will have been counted twice: Wednesday and 
Saturday. These are the days when it was both rainy and warm. 
So to get the correct figure, we have to subtract the number of 
days when it was both:

∨#( ) =# +# –#( & )w r w r w r

Dividing both sides by N, we get:

∨#( ) # # #( & )
= + –

w r w r w r
N N N N

That is:

∨( ) = ( ) + ( ) – ( & )pr w r pr w pr r pr w r
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This is the general relationship between probabilities of 
conjunctions and of disjunctions.

In Chapter 10, we saw that degrees of truth can also be measured 
by numbers between 0 and 1, and it might be natural to suppose 
that degrees of truth and probabilities are the same. They are 
not. In particular, conjunction and disjunction work quite 
differently. For degrees of truth, disjunction is a truth function. 
Specifically, ∨| |w r  is the maximum of |w| and |r|. But ∨( )pr w r  
is not determined by pr(w) and pr(r) alone, as we have just 
seen. In particular, for our w and r, ( ) = 4 / 7, ( ) = 3 / 7,pr w pr r  
and ∨( ) = 5/7.pr w r  But if | |= 4/7w  and | |= 3/7,r ∨| |= 4/7,w r  
not 5/7.

Before we can get back to inductive inferences, there is one more 
bit of information about probability that we need. Given our 
sample week, the probability that it was raining on some day, 
chosen at random, is 3/7. But suppose you know that the day in 
question was a warm one. What is the probability now that it 
rained? Well, there were four warm days, but only two of those 
were rainy, so the probability is 2/4. This figure is called a 
conditional probability, and written like this: ( | ),pr r w the 
probability of r given w. If we think about it a little, we can give a 
general formula for calculating conditional probabilities. How did 
we arrive at the figure 2/4? First, we restricted ourselves to those 
days when w is true; then we divided this into the number of those 
days when r is true, that is, the number of days when both w and r 
are true. In other words:

( | ) =#( & ) ÷ #pr r w w r w

A little algebra tells us that this is equal to:

#( & ) #
÷

w r w
N N
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And this is ( & ) ÷ ( ).pr w r pr w

So here is our general formula for conditional probability:

: ( | ) = ( & )/ ( )pr r w pr w r pr wCP

A modicum of care is required in applying this formula. Dividing 
by the number 0 makes no sense. 3/0, for example, has no 
value. Mathematicians call this ratio undefined. In the formula 
for ( | ),pr r w  we have divided by pr(w), which makes sense only 
if this is not zero, that is, only if w is true at least sometimes. 
Otherwise, the conditional probability is undefined.

Now, at last, we can come back to inductive inferences. What is it 
for an inference to be inductively valid? Simply that the premisses 
make the conclusion more probable than not. That is, the 
conditional probability of c, the conclusion, given p, the premiss 
(or the conjunction of the premisses if there are more than one) is 
greater than that of the negation of c:

( | ) > (¬ | )pr c p pr c p

Thus, if we are reasoning about the week of our illustration, the 
inference:

It was a rainy day; so it was a warm day;

is inductively valid. As is easy to check, ( | ) = 2/3,pr w r  
and (¬ | ) = 1/3.pr w r

The analysis can be applied to show why the inference of Holmes 
with which we started is valid. Holmes concluded that Jabez 
Wilson had been doing a lot of writing (c). His premiss was to the 
effect that there were certain marks of wear on Wilson’s jacket (p). 
Now, had we gone around the London of Holmes’s day, and 
collected all those people with worn cuffs of the kind in question, 
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then the majority of those would have been clerks, people who 
spent their working lives writing—or so we may suppose. Thus, 
the probability that Jabez had been doing a lot of writing, given 
that his coat bore those marks, is greater than the probability that 
he had not. Holmes’s inference is indeed inductively valid.

Let me finish by noting one puzzle to which the machinery we 
have just deployed gives rise. As we have seen, a probability can be 
calculated as a ratio: we take a certain reference class; then we 
calculate the numbers of various groups within it; then we do 
some dividing. But which reference class do we use? In the 
illustrative example concerning the weather, I started by 
specifying the reference class in question: the days of that 
particular week. But real-life problems are not posed in this way.

Come back to Jabez Wilson. To work out the probabilities 
relevant in this case, I suggested that we take the reference class 
to comprise the people living in London in Holmes’s day. But 
why this? Why not the people living in the whole of England 
then, or in Europe, or just the males in London, or just the 
people who could afford to come and see Holmes? Maybe, in 
some of these cases, it wouldn’t make much difference. But 
certainly in others it would. For example, the people who came 
to see Holmes were all relatively well off, and not likely to wear 
second-hand coats. Things would be quite different with a wider 
population. So what should the appropriate reference class have 
been? This is the sort of question that keeps actuaries (the 
people who try to figure out risk-factors for insurance 
companies) awake at night.

In the last analysis, the most accurate reference class would seem 
to be the one comprising just Wilson himself. After all, what do 
facts about other people ultimately have to do with him? But in 
that case, he had either been doing a lot of writing, or he had not. 
In the first case, the probability that he has been writing given that 
he has a shiny cuff, is 1, and the inference is valid; in the second, 
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it is 0, and the inference is not valid. In other words, the validity of 
the inference depends entirely on the truth of the conclusion. So 
you can’t employ the inference in order to determine whether or 
not the conclusion is true. If we go this far, the notion of validity 
delivered is entirely useless.

Main ideas of the chapter

•  The probability of a statement is the number of cases in 
which it is true, divided by the number of cases in the 
reference class.

• (¬ )  1  ( )pr a pr a= −

• ( )  ( )  ( ) ( & )pr a b pr a pr b pr a b∨ = + −

• ( | )  ( & ) / ( )pr a b pr a b pr b=

•  An inference is inductively valid just if the conditional 
probability of the conclusion given the (conjunction of the) 
premiss(es) is greater than that of its negation given the 
premisses.
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Chapter 11 gave us a basic understanding of probability and the 
role it may have in inductive inferences. In this chapter, we’ll look 
at some further aspects of this. Let’s start by considering a very 
famous inductive inference.

The physical cosmos is not a purely random mess. It shows very 
distinctive patterns: matter is structured into galaxies (Figure 12), 
which are structured, in turn, into stars and planetary systems, 
and on some of those planetary systems, matter is structured in 
such a way as to produce living creatures like you and me. What 
is the explanation for this? You might say that the explanation is 
provided by the laws of physics and biology. And so it may be. 
But why are the laws of physics and biology the way they are? 
After all, they could have been quite different. For example, 
gravity could have been a force of repulsion, not attraction. In 
that case, there would never have been stable chunks of matter, 
and life as we know it would have been impossible anywhere in 
the cosmos. Does this not give us excellent reason to believe 
in the existence of a creator of the cosmos: an intelligent 
being who brought into existence the cosmos, together with 
its physical and biological laws, for some purpose or other? 
In short, does not the fact that the physical cosmos is ordered in 
the way that it is give us reason to believe in the existence of 
a god of a certain kind?

Chapter 12
Inverse probability: you can’t 
be indifferent about it!



85

This argument (for the existence of god) is often called the 
‘Argument from Design’. It might better be called the Argument to 
Design; but never mind that. Let us think about it more closely. 
The premiss of the argument, o, is a statement to the effect that 
the cosmos is ordered in a certain way. The conclusion, g, asserts 
the existence of a creator-god. Unless g were true, o would be 
most unlikely; so, the argument goes, given that o, g is likely.
Now, it is certainly true that the conditional probability of o given 
that g is true, is much higher than that of o given that g is false:

1 pr(o|g) > pr(o|¬g)

But this does not give us what we want. For o to be a good 
inductive reason for g, we need the probability of g, given o, to be 
greater than that of its negation:

2 pr(g|o) > pr(¬g|o)

12. Matter has a distinctive structure. A spiral galaxy.
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And the fact that ( | )pr o g is high does not necessarily mean 
that ( | )pr g o  is high. For example, the probability that you are in 
Australia, given that you see a kangaroo in the wild, is very high. 
(Everywhere else, it would have to have escaped from a zoo.) But 
the probability that you will see a kangaroo in the wild, given that 
you are in Australia, is very low. (I lived in Australia for about ten 
years before I saw one.)

 ( | )pr o g and ( | )pr g o are called inverse probabilities, and what we 
have seen is that for the design argument to work, the relationship 
between them must be such as to get us from 1 to 2. Is it? There is, in 
fact, a very simple relationship between inverse probabilities. Recall 
from the equation CP of Chapter 11 that, by definition:

( | ) = ( & ) / ( )pr a b pr a b pr b

So:

3 pr(a|b) × pr(b) = pr(a & b)

Similarly:

( | ) = ( & ) / ( )pr b a pr b a pr a

So:

4 pr(b|a) × pr(a) = pr(b & a).

But =( & ) ( & )pr a b pr b a  (since a & b and b & a are true in 
exactly the same situations). Thus, 3 and 4 give us:

× = ×( | ) ( ) ( | ) ( )pr a b pr b pr b a pr a

Assuming that ( )pr b  is not o—I shall make assumptions of this kind 
without further mention—we can rearrange this equation to get:

Inv: pr(a|b) = pr(b|a) × pr(a)/pr(b)
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This is the relationship between inverse probabilities. (To 
remember this, it may help to note that on the right hand side, 
it’s first a b followed by an a, and then an a followed by a b.)

Using Inv to rewrite the inverse probabilities in 1, we get:

× > ×
( ) ( )

( | ) (¬ | )
( ) (¬ )

pr o pr o
pr g o pr g o

pr g pr g

And cancelling the pr(o) on both sides gives:

>
( | ) (¬ | )

( ) (¬ )
pr g o pr g o

pr g pr g

Or, rearranging the equation:

5 >
( | ) ( )

(¬ | ) (¬ )
pr g o pr g

pr g o pr g

Recall that for the Argument to Design to work, we have to get to 
2, which is equivalent to:

>
( | )

1
(¬ | )

pr g o
pr g o

It would appear that the only plausible thing that will take us to 
this from 5 is ≥

( )
1,

(¬ )
pr g

pr g
that is:

≥( ) (¬ )pr g pr g

The values ( )pr g  and (¬ )pr g  are called prior probabilities; 
that is, the probabilities of g and ¬g prior to the application of 
any evidence, such as o. Hence, what we seem to need to make the 
Argument go through is that the prior probability that there is a 
creator-god is greater than (or equal to) the prior probability that 
there is not.

Is it? Unfortunately, there is no reason to believe so. In fact, it 
would seem that it is the other way around. Suppose you don’t 
know what day of the week it is. Let m be the hypothesis that it is 



88

Monday. Then ¬m is the hypothesis that it is not Monday. Which 
is more likely, m or ¬m? Surely, ¬m: because there are lots more 
ways for it not to be Monday than there are for it to be Monday. 
(It could be Tuesday, Wednesday, Thursday, . . . ) Similarly with 
god. Conceivably, there are many different ways that the cosmos 
could have been. And intuitively, relatively few of those are 
significantly ordered: order is something special. That, after 
all, is what gives the Argument to Design its bite. But then there 
are relatively few possible cosmoses in which there is an orderer. 
So a priori, it is much more likely that there is no creator than 
that there is.

What we see, then, is that the Argument to Design fails. It is 
seductive because people often confuse probabilities with their 
inverses, and so slide over a crucial part of the argument.

Many inductive arguments require us to reason about inverse 
probabilities. The Argument to Design is not special in this 
regard. But many arguments are more successful in doing this. Let 
me illustrate. Suppose you visit the local casino. They have two 
roulette wheels. Call them A and B. You have been told by a friend 
that one of them is fixed—though the friend couldn’t tell you 
which one. Instead of coming up red half of the time, and black 
half of the time, as a fair wheel should, it comes up red 3/4 of the 
time, and black 1/4 of the time. (Strictly speaking, real roulette 
wheels come up green occasionally as well; but let’s ignore this 
fact to keep things simple.) Now, suppose you watch one of the 
wheels, say wheel A, and on five successive spins it comes up with 
the results:

R, R, R, R, B

(R is red, B is black). Are you justified in inferring that this is the 
wheel that is fixed? In other words, let c be a statement to the 
effect that this particular sequence came up, and f be the 
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statement that wheel A is fixed. Is the inference from c to f a good 
inductive inference?

We need to know whether >( | ) (¬ | ).pr f c pr f c Using the equation 
Inv to convert this into a relationship between inverse 
probabilities, what this means is that:

× > ×
( ) (¬ )

( | ) ( |¬ )
( ) ( )

pr f pr f
pr c f pr c f

pr c pr c

Multiplying both sides by pr(c) gives:

× > ×( | ) ( ) ( |¬ ) (¬ )pr c f pr f pr c f pr f

Is this true? For a start, what are the prior probabilities of 
f and ¬f? We know that either A or B is fixed (but not both). We 
have no more reason to believe that it is wheel A, rather than 
wheel B, or vice versa. So the probability that it is wheel A is 
1/2, and the probability that it is wheel B is also 1/2. In other 
words, ( ) = 1/2,pr f and (¬ ) = 1/2.pr f  So we can cancel 
these out so that the relevant condition becomes:

>( | ) ( |¬ )pr c f pr c f

The probability of observing the sequence stated by c, given that 
the wheel is fixed in the way described, ( | ),pr c f  is ×4(¾) (¼).  
(Never mind if you don’t know why: you can take my word for it.) 
This is 81/45, which works out to 0.079. The probability that the 
sequence is observed, given that the wheel is not fixed, and so fair, 

( |¬ ),pr c f  is 5(½)  (again, take my word for this if you wish), which 
works out to 0.031. This is less than 0.079. So the inference is valid.

The way that we worked out prior probabilities here is worth 
noting. We have two possibilities: either wheel A is fixed, or wheel 
B is. And we have no information that distinguishes between these 
two possibilities. So we assign them the same probability. This is 
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an application of something called the Principle of Indifference. 
The Principle tells us that when we have a number of possibilities, 
with no relevant difference between any of them, they all have the 
same probability. Thus, if there are N possibilities in all, each has 
probability 1/N. The Principle of Indifference is a sort of 
symmetry principle.

Notice that we could not apply the Principle in the Argument to 
Design. In the roulette case, there are two possible situations 
which are completely symmetric: wheel A is fixed; wheel B is fixed. 
In the Argument to Design, there are two situations: a creator-god 
exists; a creator-god does not exist. But these two situations are no 
more symmetric than: today is Monday; today is not Monday. As 
we saw, intuitively, there are lots more possibilities in which there 
is no creator than possibilities in which there is.

The Principle of Indifference is an important part of intuitive 
reasoning about probability. Let us end this chapter by noting that 
it is not without its problems. It is well known that it leads to 
paradoxes in certain applications. Here is one.

Suppose a car leaves Brisbane at noon, travelling to a town 
300 km away. The car averages a constant velocity somewhere 
between 50 km/h and 100 km/h. What can we say about the 
probability of the time of its arrival? Well, if it is going at 100 
km/h it will arrive at 3 p.m.; and if it is going at 50 km/h, it will 
arrive at 6 p.m. Hence, it will arrive between these two times. 
The mid-point between these times is 4.30 p.m. So by the 
Principle of Indifference, the car is as likely to arrive before 
4.30 p.m. as after it. But now, half way between 50 km/h and 
100 km/h is 75 km/h. So again by the Principle of Indifference, 
the car is as likely to be travelling over 75 km/h as under 75 km/h. 
If it is travelling at 75 km/h, it will arrive at 4 p.m. So it is as 
likely to arrive before 4 p.m. as after it. In particular, then, it is 
more likely to arrive before 4.30 p.m. than after it. (That gives it 
an extra half an hour.)
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I’ll leave you to think about this. We have had quite enough about 
probability for one chapter!

Main ideas of the chapter

 • 
( )( | ) ( | )
( )

pr apr a b pr b a
pr b

= ×

•  Given a number of possibilities, with no relevant difference 
between them, they all have the same probability (Principle 
of Indifference).
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Let us look at one final issue concerning inductive reasoning. This 
topic is sometimes called practical reasoning, since it is reasoning 
about how one should act. Here is a famous piece of practical 
reasoning.

You can choose to believe in the existence of (a Christian) God; 
you can choose not to. Let us suppose that you choose to believe. 
Either God exists or God does not. If God exists, all well and 
good. If not, then your belief is a minor inconvenience: it means 
that you will have wasted a bit of time in church, and maybe 
done a few other things that you would not otherwise have 
wanted to do; but none of this is disastrous. Now suppose, on 
the other hand, that you choose not to believe in the existence of 
God. Again, either God exists or not. If God does not exist, all 
well and good. But if God does exist, boy are you in trouble! You 
are in for a lot of suffering in the afterlife; maybe for all eternity 
if a bit of mercy isn’t thrown in. So any wise person ought to 
believe in the existence of God. It’s the only prudent course 
of action.

The argument is now usually called Pascal’s Wager, after the 
17th-century philosopher Blaise Pascal who first put it forward. 
What is one to say about the Wager?

Chapter 13
Decision theory: great 
expectations
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Let us think a little about how this kind of reasoning works, 
starting with a slightly less contentious example. When we 
perform actions, we often cannot be sure of the results, which 
may not be entirely under our control. But we can usually 
estimate how likely the various possible results are; and, just as 
importantly, we can estimate the value to ourselves of the various 
results. Conventionally, we can measure the value of an outcome 
by assigning it a number on the following scale, open ended in 
both directions:

,–4,–3,–2,0,+1,+2,+3,+4,… …

Positive numbers are good, and the further to the right, the better. 
Negative numbers are bad, and the further to the left, the worse. 
0 is a point of indifference: we don’t care either way.

Now, suppose there is some action we may perform, say going for a 
bike ride. It may, however, rain. A bike ride when it is not raining is 
great fun, so we would value that at, say, +10. But a bike ride when 
it is raining can be pretty miserable, so we would value that at, 
say, −5. What value should be put on the only thing that is under 
our control: going on the ride? We could just add the two figures, 
−5 and 10, together, but that would be missing an important part 
of the picture. It may be that it is most unlikely to rain, so although 
the possibility of rain is bad, we do not want to give it too much 
weight. Suppose the probability of rain is, say, 0.1; correspondingly, 
the probability of no rain is 0.9. Then we can weight the values 
with the appropriate probabilities to arrive at an overall value:

0.1 × (–5) + 0.9× 10

This is equal to 8.5, and is called the expectation of the action in 
question, going for a ride. (‘Expectation’, here, is a technical term; 
it has virtually nothing to do with the meaning of the word as used 
normally in English.)
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In general, let a be the statement that we perform some action 
or other. Suppose, for simplicity, that there are two possible 
outcomes; let o1 state that one of these occurs, and let o2 state 
that the other occurs. Finally, let V(o) be the value we attach to 
o being true. Then the expectation of a, E(a), is the number 
defined by:

1 1 2 2( ) × ( ) + ( ) × ( )pr o V o pr o V o

(Strictly speaking, the probabilities in question should be 
conditional probabilities, 1( | )pr o a  and 2( | ) ,pr o a respectively. 
But in the example, going for a ride has no effect on the 
probability of rain. The same is true in all the other examples 
we will look at. So we can stick with the simple prior 
probabilities here.)

So far so good. But how does this help me to decide whether or 
not to go for the bike ride? I know the overall value of my going 
for a ride. Its expectation is 8.5, as we have just seen. What is the 
expectation of not going for a ride? Again, either it will rain or it 
will not—with the same probabilities. The two outcomes now are 
(i) that it will rain and I stay at home; and (ii) that it will not rain 
and I stay at home. In each of these cases, I derive no pleasure 
from a bike ride. It might be slightly worse if it doesn’t rain. In 
that case I might be annoyed that I didn’t go. But in neither 
case is it as bad as getting soaked. So the values might be 0 if it 
rains, and −1 if it does not. I can now calculate the expectation 
of staying at home:

0.1 × 0 + 0.9 (–1)×

This comes to −0.9, and gives me the information I need; for 
I should choose that action which has the highest overall value, 
that is, expectation. In this case, going has expectation 8.5, whilst 
staying at home has value −0.9. So I should go for a ride.
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Thus, given a choice between a and ¬a, I should choose 
whichever has the greater expectation. (If they are the same, 
I can simply choose at random, say by tossing a coin.) In the 
previous case, there are only two possibilities. In general, 
there might be more (say, going for a ride, going to the movies, 
and staying at home). The principle is the same, though: 
I calculate the expectation of each possibility, and choose 
whichever has the greatest expectation. This sort of reasoning 
is a simple example from the branch of logic called 
decision theory.

Now let’s come back to Pascal’s Wager. In this case, there  
are two possible actions: believing or not; and there are two 
relevant possibilities: God exists or does not. We can  
represent the relevant information in the form of the  
following table.

The figures to the left of the backward slashes are the relevant 
probabilities, 0.1 that God exists, say, and 0.9 that God doesn’t 
exist. (Whether or not I believe has no effect on whether or not 
God exists, so the probabilities are the same in both rows.) The 
figures to the right of the slashes are the relevant values. I don’t 
mind too much whether or not God exists; the important thing 
is that I get it right; so the value in each of these cases is +102. 
(Perhaps one’s preferences here might not be exactly the same, but 
it doesn’t matter too much, as we shall see.) Believing, when God 
doesn’t exist, is a minor inconvenience, so gets the value −10. Not 
believing, when God does exist, is really bad, though. It gets the 
value −106.

 God exists God doesn’t exist

I believe (b) 0.1\+102 0.9\−10

I don’t believe (¬b) 0.1\−106 0.9\+102
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Given these values, we can compute the relevant expectations:

2

6 2 5

( ) = 0.1 × 10 + 0.9× (–10) 0
(¬ ) = 0.1 × (–10 ) + 0.9× 10 –10

E b
E b





( means ‘is approximately equal to’.) I should choose whichever 
action has the greater expectation, which is to believe.

You may think that the precise values I have chosen are somewhat 
artificial; and so they are. But in fact, the precise values don’t 
really matter too much. The important one is the −106. This figure 
represents something that is really bad. (Sometimes, a decision 
theorist might write this as −∞.) It is so bad that it will swamp all 
the other figures, even if the probability of God’s existence is very 
low. That is the punch in Pascal’s Wager.

The Wager might look fairly persuasive, but in fact it makes a rather 
simple decision-theoretic error. It omits some relevant possibilities. 
There is not just one possible god, there are many: a Christian god 
(God), Islam’s Allah, Hinduism’s Brahman, and lots more that 
various minor religions worship. And a number of these are very 
jealous gods. If God exists, and you don’t believe, you are in trouble; 
but if Allah exists and you don’t believe, you are equally in trouble; 
and so on. Moreover, if God exists, and you believe in Allah—or vice 
versa—this is even worse. For in both Christianity and Islam, 
believing in false gods is worse than being a simple non-believer.

Let’s draw up a table with some more realistic information.

 No God exists God exists Allah exists …

No belief (n) 0.9\+102 0.01\−106 0.01\−106 …

Believe in God (g) 0.9\−10 0.01\+102 0.01\−109 …

Believe in Allah (a) 0.9\−10 0.01\−109 0.01\+102 …

⋮ ⋮ ⋮ ⋮  
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If we compute the expectations on even this limited amount 
of information, we get:

2 6 6 4

2 9 7

9 2 7

( ) = 0.9× 10 0.01 × (–10 ) 0.01 × (–10 ) –2 × 10
( ) = 0.9× (–10) 0.01 × 10 0.01 × (–10 ) –10
( ) = 0.9× (–10) 0.01 × (–10 ) 0.01 ×10 –10

E n
E g
E a

+ +
+ +
+ +







Things are looking pretty bleak all round. But it is clear that 
theistic beliefs are coming off worst. You shouldn’t have any 
of them.

Let me end, as I have ended all the chapters, with some reasons 
as to why one might be worried about the general framework 
deployed—specifically, in this case, the policy of deciding 
according to the greatest expectation. There are situations 
where this definitely seems to give the wrong results.

Let’s suppose you take the wrong gamble on Pascal’s Wager, and 
end up in Hell. After a few days, the Devil appears with an offer. 
God has commanded that you be shown some mercy. So the Devil 
has hatched a plan (Figure 13). He will give you one chance to get 
out of Hell. You can toss a coin; if it comes down heads, you are 
out and go to Heaven. If it comes down tails, you stay in Hell 
forever. The coin is not a fair one, however, and the Devil has 
control of the odds. If you toss it today, the chance of heads is 
1/2 (i.e. 1 – 1/2). If you wait till tomorrow, the chances go up to 
3/4 (i.e. 1 – 1/22). You sum up the information:

Escaping has a very large positive value; staying in Hell has a very 
large negative value. Moreover, these values are the same today as 

 Escape Stay in Hell

Toss today (d) 0.5\+106 0.5\−106

Toss tomorrow (m) 0.75\+106 0.25\−106
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tomorrow. It is true that if you wait till tomorrow, you might have 
to spend an extra day in Hell, but one day is negligible compared 
with the infinite number of days that are to follow. Then you do 
the calculations:

6 6

6 6 6

( ) = 0.5 × 10 0.5 × (–10 ) = 0
( ) = 0.75 × 10 0.25 × (–10 ) = 0.5 × 10

E d
E m

+
+

So you decide to wait till tomorrow.

13. A devilish plan: never do today what you should put off until 
tomorrow.
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But tomorrow the Devil comes to you and says that if you wait one 
more day, the odds will get even better: they will go up to 7/8 (i.e. 
1 – 1/23). I will let you do the calculations: you should decide to 
wait till the next day. The trouble is that every day the Devil comes 
to you and offers you better odds if you will wait till the next day. 
The odds get better, day by day, as follows:

− − − − … − …2 3 41 1 / 2, 1 1 / 2 , 1 1 / 2 , 1 1 / 2 , , 1 1 / 2 ,n

Every day you do the calculation. The expectation of tossing on 
the nth day is:

6 6(1 – 1 / 2 ) × 10 + 1 / 2 × (–10 )n n

A little arithmetic tells us that this is 610 × (1 – 2/2 ) = n

−6 110 × (1 – 2 .1 / )n  The expectation for waiting till the next,  
n + 1st, day is the same, with n replaced by n + 1. That 
is, 610 × (1 – 1/2 )n —which is larger. (1/2n is smaller than 1/2n−1.) 
Every day, the expectation goes up.

Hence, every day you do the rational thing and wait till the next 
day. The result is that you never toss the coin at all, so you stay in 
Hell for ever! Tossing on any day has to be better than that. So it 
looks as though the only rational thing to do is to be irrational!

Main ideas of the chapter

• = × + + ×1 1( )  ( ) ( )  . . . ( ) ( )n nE a pr o V o pr o V o , where o1, . . . , on state 
all the possible outcomes that might result from a being true.

• The rational action is the one with the greatest expectation.
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If you have got this far in the book, you will have a reasonable 
sense of the basic ideas of modern logic. But that is just a 
beginning. Modern logic goes a long way beyond these ideas, 
with results of great profundity and beauty. There is, of course, 
no possibility of surveying these in a book of this nature, but this 
chapter and the next will, at least, offer a glimpse of what lies 
beyond. We will take a look at some results about what formal 
reasoning can and can’t do, and some of the philosophical 
implications of these facts. A warning: these chapters may be 
a bit tougher than the previous ones. I have made matters 
as simple as I can, but we are dealing with some complex 
mathematical issues. Having said all this, on with the topic 
of this chapter.

Leibniz—the same Leibniz we met in Chapters 6 and 9—had 
a dream, a dream that would end disputes. Whenever we have a 
claim over which there is disputation, we may write it in a suitable 
language, the characteristica universalis. Then, to determine 
the truth of the claim, calculemus—we simply calculate. The 
language is such that there is a process of computation, a calculus 
ratiocinator, which can be applied to determine whether or not 
the claim is true.

Chapter 14
Halt! What goes there?
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Though Leibniz did suggest steps in the direction of achieving this 
project, it was never more than a dream. The mathematics of his 
day was just not up to tackling the project he envisaged.

The mathematics of our day is. The symbolic languages we have 
been looking at in previous chapters are such that claims whose 
truth value is not known (at least, a good many such claims) can 
be expressed in them. The question that then remains is whether 
there is an appropriate calculating procedure.

The answer (sadly) is that there is not—even for the very limited 
domain of mathematical claims. This was proved by the British 
mathematician Alan Turing (1912–54) in 1936 (Figure 14). Turing is 
one of the founding figures of modern computer science. Of course, 
in his day there was nothing like the modern computer, now 
familiar to most people. But the theory of such machines was, in 
fact, worked out by Turing and others well before such computers 
existed, leaving others to find out how the ideas could be realized in 
practice—though Turing himself made some notable advances in 
the more practical aspects of constructing computing machines; for 
example, with his work on the Enigma Project, aimed at decoding 
German naval radio transmissions in the Second World War. As 
might be expected, the connection between Turing’s interest in 
computation and Leibniz’s dream is no coincidence.

What is a computer? At its simplest, it is some device that receives 
an input or inputs, performs some procedure—mathematicians 
call it an algorithm, the name coming from the Persian 
mathematician Al Khwārizmī (780–850)—and then (if you are 
lucky) gives you an output.

The inputs and outputs of modern computers are of different 
kinds: numbers, text, pictures, sounds. But to the machine, these 
are all just numbers. That is all it can operate on. The input 
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devices of the computer translate the input into a sequence of 
numbers on which the algorithm operates. The output device 
reverses the procedure.

The form in which the numbers used by the computer are stored 
is not the one that is familiar from primary-school arithmetic, 
though. The storage cells of a computer can be in only one of 
two states: on or off. So the computer has only two basic bits of 
information it can employ. One can think of these as 1 and 0. Any 
number has to be expressed using just these two digits. This is 
done using binary arithmetic. (That is, how you’d count if you had 
only two fingers.) In standard (decimal) arithmetic, a numeral is 
really a way of expressing a sum of powers of 10. Thus, 4,302 is:

 4 × 103 +  3 × 102 + 0 × 101 + 2 × 100

14. Alan Turing (1912–54), a founder of modern computer science.
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(100—indeed, anything raised to the power 0—is just 1). Similarly, 
a binary numeral represents a sum of powers, but this time 
powers of 2. So 1,011 is:

 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20

The following table gives the conversion between the first few 
decimal numerals and the first few binary numerals.

We may therefore take our computation (algorithm) to be something 
that operates on numbers expressed in this binary way.

So much for the input and output, but what is a computation? 
A computation is specified by a set of rules of the kind found in 
standard computer programs. Such programs are written in many 
different languages, whose precise details are not relevant here. 
A rather dull program might look something like this:

 1. if x = 0 output x; else go to line 2
 2. let x:= x − 1
 3. go to line 1

The left hand numbers are line numbers. The input is some 
number, x. The first line tests to see whether this is 0, and, if it 
is, outputs it. Otherwise it goes to the next line. This reduces x 

Decimal Binary

0 0

1 1

2 10

3 11

4 100

5 101
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by 1, and then the computation goes back to line 1. As a little 
thought shows, what this program does is to take any input, and 
then go round in a loop, subtracting 1 from it till it is 0, which it 
then outputs.

So far so good. Next—and this is a really clever thing about 
modern computers—the computer does not have to wait for 
someone to input each line of the program as the computation 
proceeds. The program itself is stored in the computer. Of 
course, it is stored as a number. The computer has no way of 
storing anything else. (Indeed, one can think of the whole state 
of the computer at any time as simply one huge string of 1s and 
0s—an enormous binary numeral!) One may take the number 
representing the program and stored in the computer as the 
‘code number’ of the program. If n is any number, let Pn be the 
program with that code number. (If, because of the way that 
coding is implemented in the computer, n happens not to be 
the code number of any program, we can just let Pn be the 
simple program above, by default.) Strictly speaking, a program 
itself does not really care how many inputs the algorithm it 
is running is supposed to have. It just helps itself to any 
information which resides in the computer when it is told to. 
By convention, though, we can assume that all the input bits 
of information are set to 0, except the relevant ones, which 
are appropriately filled.

Now, sometimes a program with a given input will deliver an 
output; but sometimes it will just keep on going for ever. So 
consider the following program:

 1. let x: = x + 1
 2. if x = 0 output x; else go to line 1

The program takes some input and adds 1 to it. It then tests 
to see whether it is 0, and, if it is, it outputs x. But of course 
it is not zero (our binary numbers are always greater than or 
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equal to zero), so we go back to line 1 and repeat the process. 
We never get to 0 by adding 1, and so the computation never 
ceases, and just goes on forever, in an endless loop (in practice, 
until the machine wears out, or x become too big for it to handle). 
Let us call this program, for future reference, L (for looping).

Well-constructed programs are designed so that this can never 
happen. The programmer analyses the program to see that it can 
never go off into an infinite loop of this kind. But can this always be 
done? Is there an algorithm we can apply to a program (or, more 
precisely, its code number) and inputs, to determine whether or 
not a computation with that program and those inputs terminates?

The answer is no. And this is what Turing proved. The proof is a 
relatively simple, but very clever, one. It is by reductio ad 
absurdum. In such a proof, we assume the opposite of what we 
wish to prove, and then show that this leads to something 
unacceptable.

So suppose that there were an algorithm which did what is 
needed. Call this A. Thus, when A is applied to two inputs, n and i, 
it outputs 1 or 0. 1 means that a computation of the program Pn 
with input i terminates; 0 means that it does not.

Now consider the following algorithm. Let us call it T (for Turing):

 • Run the algorithm A with the inputs x and x. That algorithm 
terminates giving either a 1 or a 0.

 • If it is 0, output 1

 • If it is 1, run L with input x.

What does this program with input x do? Essentially, it applies 
A to determine whether a computation of Px with input x stops. 
If it does not, it outputs a 1. In particular, it stops. But if that 
computation does stop, the whole computation goes off into an 
infinite loop and never stops.
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I have described the program T in fairly ‘high level’ terms. But 
there is nothing particularly problematic about it. Any skilled 
programmer who understands how information is coded into the 
computer and stored in it, and who is using a language that has 
direct access to this data, can write such a program.

Now, and to complete the proof: T, itself, has a code number. Call 
this t. We may run T with t itself as input. If that computation 
stops, then running A with inputs t and t stops and outputs 1. But 
then the computation with T goes off into an infinite loop and 
never stops. If, on the other hand, running T with input t does 
not stop, then running A with inputs t and t stops and outputs 0. 
So the computation with T stops and outputs 1. Hence, if the 
computation does not stop, it does stop! Either way, then, we have 
something impossible. So our original assumption that there is an 
algorithm A, must have been false.

The clever thing about Turing’s proof is a certain kind of  
self-reference. (We met self-reference in Chapter 5.) It takes some 
putative program and applies it to its very own code. This is 
sometimes called diagonalization, a technique invented by the 
great German mathematician, Georg Cantor (1845–1918), in his 
investigations of the infinite. You can see why it is called this by 
considering the following table:

 0 1 2 3 4 …

0 a00 a01 a02 a03 a04 …

1 a10 a11 a12 a13 a14 …

2 a20 a21 a22 a23 a24 …

3 a30 a31 a32 a33 a34 …

4 a40 a41 a42 a43 a44 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮  
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Down the left-hand side are the codes of programs. Across the top 
are inputs. The entry axy is the output for program (with code) x, 
when run with input y. If that computation does not terminate, 
we might indicate this by the symbol ∞. What the algorithm A 
does—were it to exist—is to compute whether the value of axy 
is ∞ or not. T takes the result of that computation on the diagonal 
(bolded), and operates on it to ensure that T behaves differently 
from Px on input x. So T cannot be on the left-hand list. But every 
program occurs on this list. So T does not exist. And since T 
was defined unproblematically from the algorithm A, A cannot 
exist either.

The result is known as the Halting Theorem. And what it shows is 
that there is no algorithm which can determine whether any given 
program, with any given input, halts (though, of course, we may 
be able to do this in special cases). And—to return finally to 
Leibniz’s dream—what we see is that there are mathematical 
questions, such as this one, for which there is no algorithm to 
determine their truth. Leibniz’s dream cannot be realized.

I have ended previous chapters by pointing out why the line run 
in the chapter might be contestable. Let me end this chapter in 
the same way. Given standard assumptions of number theory, 
it is impossible to contest Turing’s proof. This is as good a piece 
of mathematics as it is possible for there to be. But in the 
argument I have given, there is an assumption which I have 
made so far without comment. The assumption is that 
everything which we can recognize as an algorithm can be 
programmed on a computer. If this is not the case, then Turing’s 
proof shows only that there is no computer program which can 
determine whether any computation stops. But maybe there 
could be some other sort of algorithm—maybe one which could 
be deployed in Leibniz’s project.

The claim that one can write a computer program for every 
algorithm is called the Church–Turing Thesis, after Turing and 
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the American mathematician Alonzo Church (1903–95). It is not 
itself susceptible to mathematical proof, since proof can work 
only on precisely defined notions; and while the notion of what a 
computer can do can be defined in precise mathematical terms, 
the notion of an algorithm is merely an informal and intuitive one. 
An algorithm is, roughly, a procedure that can be done in steps 
where there is no guessing and no creativity—and those are 
somewhat vague notions.

The Church–Turing Thesis has for a long time been well 
accepted by mathematicians. There is a history of attempts to 
refute it. These all attempted to produce something that can be 
recognized, intuititively, as algorithmic, but which cannot be 
programmed on a computer—a matter which is susceptible of 
precise mathematical proof. Such attempts all failed; hence 
the orthodoxy of the Church–Turing Thesis.

However, there are now areas of research into methods of 
computation other than the sort employed by a desktop computer. 
These are sometimes called hypercomputation. One example: 
some methods involved use analogue quantities, as opposed to 
digital. (Analogue quantities are continuous, like length; whereas 
digital quantities are discrete, like binary numbers.) Another 
example: some methods involved appeal to properties of space 
and time in the General Theory of Relativity, where time can 
‘speed up’. It is, as yet, too early to be clear what the upshot of such 
investigations will be.

Main ideas of the chapter

 • Algorithms can be assigned code numbers.

 • If there were an algorithm, A, to determine whether the 
algorithm with code number x (that is, Px) terminated when 
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run with input y, we could use this to define an algorithm, T, 
which computes the value of A with inputs x and x, and uses 
the result to ensure that its own output is different from 
each Px ‘along the diagonal’.

 • T must itself have a code number, t. Running T with input t 
would then produce an impossible result.

 • Hence there is no such algorithm as T, and so no such 
algorithm as A.
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The title of this chapter sounds rather like something that a petty 
criminal might say to a police officer. But in fact, it announces 
another of the most significant results in logic in the last 100 years. 
(A quick warning: in previous chapters I have used lower case 
letters (a, b, etc.) for sentences. In this chapter, I will use upper 
case letters (A, B, etc.), so as to avoid any possible confusion 
with numbers.)

Leibniz was not the only logician in the history of the subject 
to have an ambitious project. Another was one of the most 
significant mathematicians of the 20th century, David Hilbert 
(1862–1943), who lived and worked in Göttingen. His project, 
usually called the Hilbert Program in the Foundations of 
Mathematics, was to prove that mathematics was consistent; that 
is, to prove that in mathematics one can never prove any things of 
the form A and ¬A. In the 1920s mathematics was still in a state 
of shock from the discovery of Russell’s paradox (which we met in 
Chapter 5) and others of its ilk: paradoxical arguments which 
struck at the very core of mathematics. Hilbert wanted to make 
sure that this was not going to happen again.

One has to be a bit careful here. The proof of consistency would, 
of course, be a mathematical one. And if mathematics is 
inconsistent, maybe it could prove its consistency anyway. 

Chapter 15
Maybe it is true—but you 
can’t prove it!



111

Indeed, if the logic employed is the one we looked at in 
Chapter 2, if mathematics is inconsistent, it can prove everything! 
As we saw there, in that logic, everything follows from a 
contradiction. So the proof of consistency had to be done 
with a particularly secure kind of mathematical reasoning. 
Hilbert called this finitary; but that is not the relevant part 
of the story here.

The relevant part is this. To prove something consistent you 
first have to have a fix on it. And if you are going to apply 
mathematics to it, you need a precise specification. So, as a 
preliminary step to his main project, Hilbert required an 
appropriate axiom system for mathematics, which he could 
then prove to be consistent.

An axiom system comprises a bunch of axioms. These are things 
that we may accept without proof. (The set of axioms may 
be finite or infinite. But if it is infinite, we need to be able to 
tell that something is an axiom. Specifically, there should be some 
algorithm which determines the matter.) A proof in the system is 
just a sequence of statements, each of which is either an axiom or 
can be deduced from earlier statements in the sequence. The 
theorems of the system are things which occur at the ends of 
proofs. The theorems, then, are the things that can be deduced, 
ultimately, from the axioms.

The method of axiomatization is a venerable one in mathematics. 
It was applied to geometry by the Ancient Greek mathematician 
Euclid (mid-4th to mid-3rd century bce). However, perhaps 
surprisingly, the method was not widely applied in mathematics 
until the 20th century. Until then, the only parts of mathematics 
which had been formulated axiomatically were geometry 
(or more precisely, geometries; by the beginning of the 
19th century, mathematicians knew there to be geometries other 
than Euclid’s—non-Euclidean geometries), and some parts of 
abstract algebra.
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Hilbert’s ambitious proposal required all of mathematics to be 
axiomatized. That is, an axiom system was needed, whose theorems 
were all and only the mathematical claims that are true (however 
one understands what it is to be true in mathematics). The 
existence of such an axiom-system was disproved by perhaps 
the most famous logician of the 20th century, the Austrian 
mathematician Kurt Gödel (1906–78; Figure 15). What Gödel 
showed was that such an axiom system cannot be provided even 
for the fragment of mathematics which concerns natural 
numbers (0, 1, 2, . . .), let alone the rest of it. This fragment of 
mathematics is now usually called arithmetic. So what Gödel 
showed was that, though there may be axiom systems capturing 
some of the truths of arithmetic, there is no axiom system 
capturing all of them. As logicians say, the axiom system must 
be incomplete.

Given the things we learned in Chapter 14, Gödel’s result can be 
shown fairly straightforwardly. The proof is, again, by reductio 
ad absurdum. Take a symbolic language which can talk about 
numbers, and which has the resources to express the things one 
can do with them: add, multiply, etc. It is not difficult to produce 
such a thing. The statement that a computation with program 
(with code) n and input i terminates can be expressed by a 
statement in this language. (It takes a bit or work to show this, but 
it is not difficult.) Call this statement Sni. Now suppose that there 
were a complete axiomatization of arithmetic, that is, an axiom 
system whose theorems were all and only the truths of this 
language. Then there is an algorithm for deciding whether Sni is 
true. We simply start to prove the theorems in a systematic way, 
ensuring that everything that can be proved is proved sooner or 
later. (It is not difficult to design such a procedure.) Sooner or 
later, then, either a proof of Sni or ¬Sni will turn up, deciding the 
question. (We may not know how long this will take, but that does 
not matter.) But the Halting Theorem of Chapter 14 tells us that 
there can be no algorithm for deciding the matter. Hence, there 
can be no such axiomatization.
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The proof I have just outlined was not Gödel’s proof. Indeed, his 
proof appeared in 1931, five years before Turing’s proof of the 
Halting Theorem. But Gödel’s proof was just as ingenious as 
Turing’s—if not more so—and also deployed a certain kind of 
self-reference. In outline, it goes as follows.

Suppose that we have an axiom system for arithmetic in a language 
with sufficient expressive capability. All of its theorems are true, 
but it may not be able to prove all the true statements of the 
language; so it may not be complete. A mathematical statement of 
this language is just a piece of text, and as we noted in Chapter 14, 
such a statement can be coded by a number. A computer program 
is sequence of statements, and, as we noted in Chapter 14, this, 
too, can be coded as a number. But a mathematical proof is also 

15. Kurt Gödel (1906–78), arguably the most famous 20th-century 
logician.
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just a sequence of statements, and so can be coded as a number 
in the same way.

Now, consider the statement: x is (the code of ) a proof of the 
statement (with code) y. This itself is a statement about 
numbers, and it can be expressed by a sentence in the language, 
Prov(x, y). Moreover, provided the axioms of the system are 
strong enough:

• if m is indeed (the code of) a proof a theorem (with code) 
n, Prov(m, n) can be proved in the axiom system

To show these things is actually quite hard, and requires some 
substantial mathematics. But it can be done, as Gödel showed.

To say that statement (with code) y is provable is just to say that 
there is a proof of it: ( )∃ ,  .xProv x y But—and here is the really 
clever part of Gödel’s proof—by an ingenious construction, one 
can find a sentence essentially of the form ( )∃¬ ,  ,xProv x n  the 
code number of which is n itself! In effect, the statement says: 
this very statement is not provable (in the system)! Call this 
sentence G (for Gödel).

Now, suppose that G, that is, ( )∃¬ ,  ,xProv x n  were provable in 
the axiom system. Then some number, m, would be the code of a 
proof of G. So Prov(m, n) would be true, and so provable in the 
axiom system (by the bullet point above). But ( )∃ ,  xProv x n  
follows from this, and so is provable. The axiom system, then, 
is inconsistent. Assuming this not to be the case, then G cannot 
be proved. But in that case it is true, because that is what it 
says! Hence there are truths in the language which cannot be proved 
in the system. So there is no complete axiom system for arithmetic.

Gödel’s theorem—however it is proved—shows a clear limitation 
of the axiomatic method in mathematics (which is not to say 
that it should not be used: indeed, axiomatization is more 
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of a staple of mathematical methodology nowadays than ever). 
In particular, it dealt a death blow to Hilbert’s Program. 
Arithmetic cannot be axiomatized—much less the whole of 
mathematics. Gödel’s result has been held to have many 
other philosophical consequences, concerning the nature 
of numbers, our knowledge of them, and even the nature of 
the human mind. The debates still continue, and this is 
not the place to go into them.

Let me finish, once more, by raising an issue about the Theorem. 
The mathematics of both proofs I have given is ungainsayable. But 
both proofs make a certain assumption (which Hilbert certainly 
took—or at least hoped!—to be the case): that the truths about 
numbers, and so an axiom system which captures any part of these, 
is consistent. This is quite explicit in Gödel’s proof, but is also 
present in the first proof I gave. That proof assumes that exactly 
one of Sni and ¬Sni will turn up, settling the matter one way or the 
other. But if the system is inconsistent, this may well not be the 
case: both may turn up, leaving the matter moot—to say the least!

Now, as may well be clear to readers, the sentence G employed in 
Gödel’s proof is a very close cousin of the liar paradox, which we 
met in Chapter 5. Both of them say of a certain sentence that it, 
itself, does not have some crucial property. Indeed, there is a 
paradox about provability closely related to the liar paradox. 
Consider the sentence: this sentence is not provable. Suppose 
that it is provable. Then it is true. So it is not provable. Hence 
(by reductio ad absurdum) it cannot be provable. But we have 
just proved this, so it is provable!

If one tries to carry out reasoning of this kind concerning the 
sentence G in its axiom system, it cannot be reproduced in the 
axiom system. Perhaps rather surprisingly, if the system is 
consistent, the claim that if something is provable in the system it 
is true, cannot be proved in the system. (This was proved by the 
German mathematician Martin Löb (1921–2006) in 1955, and so 
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is usually called Löb’s Theorem.) So the paradox cannot be used 
to establish the inconsistency of the axiom system. However, 
it does show that paradoxes of self-reference lurk in the vicinity 
of arithmetic. Given that, perhaps one should not be quite so 
confident that the truth about numbers is consistent.

Coda on Gödel’s other incompleteness theorem

The result we have been looking at in this chapter is sometimes called 
Gödel’s first incompleteness theorem. At the same time he proved 
this, Gödel proved another result, called his second incompleteness 
theorem. This shows, essentially, that if we have a consistent axiom 
system of the kind we have been looking at, it cannot prove a 
sentence naturally taken as expressing the consistency of the 
system—at least if the system is based on the logic we looked at in 
Chapter 2. In fact, it is quite easy to show this, given Löb’s Theorem.

First of all, note that since the system can prove that ¬0 = 1, if it can 
prove that 0 = 1 it is inconsistent. Conversely, if it is inconsistent, it 
can prove that 0 = 1, because of the inference from a contradiction 
to any conclusion, which we noted at in Chapter 2. Hence, a 
simple way to say that the system is consistent is to say that it 
cannot prove that 0 = 1.

Main ideas of the chapter

• An axiom system for arithmetic is complete if it can prove 
every true sentence in its language.

• No axiom system in a language with sufficiently expressive 
power is complete.

• This can be inferred from the Halting Theorem.

• It can also be proved by considering a sentence which says, 
in effect, this very sentence is not provable (in the system).
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Now, if A is any sentence of the language of the theory, let us 
write 〈 〉A  for its code number. Then a slightly more precise 
statement of Löb’s Theorem is this:

• If a system can prove the sentence ∃ 〈 〉 ⊃( , )xProv x A A , it 
can prove the sentence A.

That is:

• If a system cannot prove the sentence A, it cannot prove 
the sentence ∃ 〈 〉 ⊃( , )xProv x A A

So, as a special case, if it cannot prove 0 = 1, it cannot prove that:

• ∃ 〈 = 〉 ⊃ =( , 0  1 ) 0  1xProv x

In other words, if it is consistent, it cannot prove that 
∃ 〈 = 〉 ⊃ =( , 0  1 ) 0  1.xProv x

But then it cannot prove that ∃ 〈 = 〉¬ ( , 0  1 )xProv x  either, because, 
whatever C is, ⊃A C  follows from ¬A (as the truth table for ⊃ in 
Chapter 7 shows: if A is false, ⊃A C  is true). So if the system is 
consistent, it cannot prove that ∃ 〈 = 〉¬ ( , 0 1 )xProv x , i.e., that it 
is consistent. This is Gödel’s second incompleteness theorem.

This theorem dealt a second blow to Hilbert’s Program. The aim 
of the program was, recall, first, to axiomatize mathematics; 
then, secondly, to prove the axiom system consistent. The proof 
would of course be a mathematical proof, and so be performable 
in the system itself. The first incompleteness theorem showed 
that the first step of the program could not be realized. The 
second incompleteness theorem showed that the second step 
could not be.
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The ideas that we have been looking at in this book were developed at 
various different times and places. In this section, I will describe the 
history of logic, and locate the ideas in their historical context. I will 
first outline briefly the history of logic in general; then I will go 
through, chapter by chapter, and explain how the details fit into the 
bigger picture.

As we go along, I will also give some further reading, where you can 
follow up a number of the issues if you wish. This is not as easy as 
might be thought. By and large, logicians, philosophers, and 
mathematicians prefer to write for each other. Finding things written 
for relative beginners is not easy, but I have done my best.

In Western intellectual history, there have been three great periods of 
development in logic, with somewhat barren periods sandwiched 
between them. The first great period was ancient Greece between 
about 400 bce and 200 bce. The most influential figure here is 
Aristotle (384–322), whom we met in Chapter 6. Aristotle developed 
a systematic theory of inferences called ‘syllogisms’, which have the form:

All [some] As are [are not] Bs.
All [some] Bs are [are not] Cs.
So, all [some] As are [are not] Cs.

Aristotle lived in Athens much of his life, founded a school of 
philosophy called the Lyceum, and is usually reckoned to be the 

A little history and
some further reading
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founder of Western logic. But at about the same time, there was 
another flourishing school of logic in Megara, about 50 km west of 
Athens. Less is known about the Megarian logicians, but they seem 
to have been particularly interested in conditionals, and also in 
logical paradoxes. Eubulides (whom we met in Chapters 5 and 10) 
was a Megarian. Another important philosophical movement 
started in Athens around 300 bce. It was called Stoicism, after 
the porch (Greek, ‘stoa’) where early meetings were held. Though 
the philosophical concerns of Stoicism were much wider than 
logic, logic was an important one of them. It is generally supposed 
that Megarian logic exerted an influence on the Stoic logicians. 
At any rate, a major concern of Stoic logicians was the 
investigation of the behaviour of negation, conjunction, 
disjunction, and the conditional.

It should also be mentioned that at around the same time as all this 
was happening in Greece, theories of logic were being developed in 
India. Important as these theories are, though, they never developed 
to the sophisticated levels to which logic developed in the West.

The second growth period in Western logic starts in the early middle 
ages, with Arabic philosophers such as Ibn Rushd (Averroes, 1126–98), 
but blossoms in the medieval European universities, such as Paris and 
Oxford, from the 12th to the 14th centuries. The medieval logicians 
included such notables as Duns Scotus (1266–1308) and William of 
Ockham (1285–1349), and they systematized and greatly developed the 
logic that they inherited from ancient Greece. After this period, logic 
largely stagnated till the second half of the 19th century, the only bright 
spot on the horizon during this period being Leibniz (1646–1716), 
whom we met in Chapters 6, 9, and 14. Leibniz anticipated some of the 
modern developments in logic, but the mathematics of his day was just 
not up to allowing his ideas to take off.

The development of abstract algebra in the 19th century provided just 
what was required, and triggered the start of the third, and possibly 
the greatest, of the three periods. Radically new logical ideas were 
developed by thinkers such as Frege (1848–1925) and Russell 
(1872–1970), whom we met in Chapters 2 and 4, respectively. The 
logical theories developing from this work are normally referred to as 
modern logic, as opposed to the traditional logic that preceded it. 
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Developments in logic continued apace throughout the 20th century, 
and show no sign of slowing down yet.

A standard history of logic is Kneale and Kneale (1975). This is a little 
dated now, and is characterized by more optimism than is perhaps 
justified, in its attitude that early modern logicians had finally got 
everything pretty much right; but it is still an excellent reference 
work. Zalta (1995–) can be consulted for many authoritative articles 
on the topics covered in this book, though some of them tend to be 
quite technical.

* * *

Chapter 1: Validity

The distinction between deductive and inductive validity goes back to 
Aristotle. Theories of deductive validity have been articulated since that 
time. The view described in Chapter 1—that an inference is deductively 
valid just if the conclusion is true in any situation where its premisses 
are true—can be traced back to medieval logic; but its articulation is a 
central part of modern logic. A warning: what I have called a situation 
is more commonly called an interpretation, structure, or sometimes, 
model. The word ‘situation’ itself has a different, and technical, sense in 
one area of logic. Lewis Carroll (whose real name was Charles Dodgson) 
was no mean logician himself, and published a number of works on 
traditional logic.

Chapter 2: Truth functions—or not?

The argument to the effect that contradictions imply everything is a 
medieval invention. Exactly who invented it is unclear, but it is certainly 
to be found in Scotus. The truth-functional understanding of negation, 
conjunction, and disjunction itself seems to have arisen in the Middle 
Ages. (The Stoic account was not truth-functional in the modern sense.) 
In its fully articulated form, it appears in the founders of modern logic, 
Frege and Russell. A modern dissident is Strawson (1952, ch. 3).

Chapter 3: Names and quantifiers

The distinction between names and quantifiers is largely a creature of 
modern logic. Indeed, the analysis of quantifiers is often reckoned to 
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be a defining moment in modern logic. It was provided by Frege, 
and later taken up by Russell. At around the same time, the US 
philosopher and logician, C. S. Peirce, was developing similar ideas. 
∃x is often called the existential quantifier; but this terminology 
smuggles in a somewhat contentious theory of existence. Lewis 
Carroll’s works on Alice are replete with philosophical jokes. For an 
excellent commentary on them, see Heath (1974). For many of Heath’s 
own jokes about nothing, see Heath (1967).

The theories explained in Chapters 1–3 can be found in any standard 
modern logic text. Hodges (1977) is one that is not pitched at too 
formidable a level; neither is Lemmon (1971). The techniques of 
deductive logic to be found in subsequent chapters are described at 
much greater length in Priest (2008), though this presupposes a 
first course in logic.

Chapter 4: Descriptions and existence

The isolation of descriptions as an important logical category is also 
something to be found only in modern logic. Perhaps the most famous 
analysis of them was given by Russell in 1905. The account given in 
this chapter is not Russell’s, but it is very close in spirit. Descriptions 
are discussed in some, but not all, standard modern logic texts. 
Hodges (1977) has a good clear account.

Chapter 5: Self-reference

Various different versions of the liar paradox can be found in ancient 
Greek philosophy. More paradoxes of self-reference were invented and 
discussed throughout medieval logic. Even more were discovered 
around the turn of the 20th century—and this time at the very core of 
mathematics itself. Since then, they have become a very central issue 
in logic. Suggestions for solving them are legion. The idea that there 
might be some sentences that are neither true nor false goes back to 
Aristotle (De Interpretatione, ch. 9); however, he would have had no 
sympathy with the symmetric idea that some sentences might be 
both true and false. That there might be such sentences, and that 
paradoxical sentences might be amongst them, is an unorthodox view 
that has been advanced by some logicians in the last forty years. 
Discussions of the paradoxes of self-reference tend to get very 
technical very fast. Good introductory discussions can be found in 
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Read (1994, ch. 6) and Sainsbury (1995, chs. 5, 6). The whole area 
remains highly contentious.

Chapter 6: Necessity and possibility

The study of inferences involving modal operators goes back to 
Aristotle, and was continued in the Middle Ages. The modern 
investigations were started by the US philosopher C. I. Lewis, roughly 
between 1915 and 1930. The notion of a possible world is to be found 
in Leibniz, but the way it is applied in this chapter is due largely to 
another US philosopher, Saul Kripke, who produced the ideas in the 
1960s. A standard introduction to the area is Hughes and Cresswell 
(1996); but you are unlikely to get much out of this before you have 
mastered an introductory logic book of a more standard kind. 
Aristotle’s argument for fatalism comes from De Interpretatione, 
ch. 9. He thought it fallacious, though not for the reasons given in 
this chapter. A reasonably accessible discussion of it can be found in 
Haack (1974, ch. 3). The argument with which the chapter finishes is 
a version of the ‘Master Argument’ put forward by the Megarian 
logician Diodorus Cronus.

Chapter 7: Conditionals

Debate about the nature of conditionals goes back to the Megarians 
and Stoics, who produced a number of different theories. The issue 
was also widely discussed in the Middle Ages. The idea that the 
conditional is truth-functional is one of the Megarian views. It was 
endorsed in early modern logic by Frege and Russell. The account 
given in this chapter can certainly be found in medieval logic; in its 
modern form, it is due to C. I. Lewis, who developed modal logic 
around it. The notion of conversational implicature is due to the 
British philosopher Paul Grice in the 1970s (though he used it in 
defence of the material conditional). The nature of conditionals 
remains highly contentious. Read (1994, ch. 3) is a readable 
introduction, as is Part 1 of Sanford (1989).

Chapter 8: The future and the past

Temporal reasoning is discussed by a number of medieval logicians. 
The approach described in this chapter was invented largely by the 
New Zealand logician Arthur Prior in the 1960s, inspired by 
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developments in modal logic. A readable account of the subject can be 
found in Øhrstrøm and Hasle (1995). McTaggart’s argument appeared 
originally in 1908, though his presentation is somewhat different from 
mine. My presentation follows Mellor (1981, ch. 7).

Chapter 9: Identity and change

Confusion between the is of identity and the is of predication is a 
commonplace in the history of philosophy. Though the distinction is 
drawn by Abelard (1079–1142) and Leibniz (who enunciated ‘Leibniz’s 
Law’), it does not really become well understood until the end of the 
19th century. There are presentations in most standard modern logic 
texts, such as Lemmon (1971) and Hodges (1977). Puzzles about 
identity are legion in philosophy. The one with which the chapter 
ends is due, as far as I know, to Prior.

Chapter 10: Vagueness

Sorites problems go back to Megarian logic. The problem with which 
the chapter starts is a version of one called the Ship of Theseus, a ship 
which was, supposedly, rebuilt plank by plank. The example is used 
first by Plutarch in his Life of Theseus, and is later picked up by 
Thomas Hobbes in the section De Corpore of his Elements of Philosophy. 
Intense investigation of problems of this kind is largely a feature of 
the last fifty years. The logical details described in this chapter were 
developed initially by the Polish logician Jan Łukasiewicz (pronounced 
Woo/ka/zye/vitz) in the 1920s, quite independently of worries about 
vagueness. (He was motivated initially by Aristotle’s argument about 
fatalism.) Good discussions of vagueness can be found in Read (1994, 
ch. 7) and Sainsbury (1995, ch. 2). A much lengthier introduction is 
Williamson (1994).

Chapter 11: Probability

Historically, inductive validity is quite under-developed, compared 
with deductive validity. Probability theory was developed in the 18th 
century, in connection with games of chance, largely by French-speaking 
mathematicians, such as Pierre de Laplace and members of the 
prodigious Bernoulli family. The idea of applying it to inductive 
inference is due mainly to the German logician Rudolf Carnap in 
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the 1950s. There are many notions of probability. The one described in 
this chapter is usually called the frequency interpretation. A good 
introduction to the whole area is Skyrms (1975).

Chapter 12: Inverse probability

Investigations of the connection between inverse probabilities go 
back to the 18th-century British mathematician, Thomas Bayes. The 
connection described in this chapter is often (incorrectly) called Bayes’ 
Theorem. Problems concerning the Principle of Indifference also go 
back to the origins of probability theory. A standard introduction to 
reasoning of this kind is Howson and Urbach (1989); but this is 
not a book for those with a fear of mathematics.

Chapter 13: Decision theory

Decision theory also has its roots in the investigations of probability 
theory of the 18th century, but became a serious business in the 20th 
century, with many important applications being found in economics 
and game theory. A good introduction is Jeffrey (1985), though, again, 
this book is not for those with a fear of mathematics. The problem 
with which the chapter ends comes from Gracely (1988).

A number of the arguments we have met in this book concern God, 
one way or another. This is not because God is a particularly logical 
topic. It is just that philosophers have had a long time to come up 
with interesting arguments concerning God. In Chapter 3, we met 
the Cosmological Argument. Perhaps the most famous version of this 
was proposed by the medieval philosopher Thomas Aquinas. (His 
version is much more sophisticated than the argument of Chapter 3, 
and does not suffer from the problem pointed out there.) The 
Ontological Argument for the existence of God was proposed by 
the medieval philosopher Anselm of Canterbury. The version given 
in Chapter 4 is essentially due to the 17th-century philosopher 
René Descartes in his Fifth Meditation. Biological versions of the 
Argument to Design were popular in the 19th century, but were 
destroyed by the Theory of Evolution. Cosmological versions, of the 
kind given in Chapter 12, became very popular in the 20th century. 
A good little reference work on arguments for the existence of God is 
Hick (1964).
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Chapter 14: Halt! What goes there?

The theory of computation was worked out by logicians and 
mathematicians such at Alan Turing, Alonzo Church, and John von 
Neumann, in the first half of the 20th century, a long time before the 
existence of computers of the kind with which we are now familiar. 
This included Turing’s proof of the Halting Theorem, and the 
formulation of the Church-Turing Thesis. For a general discussion of 
these, see Copeland (2004). The notion of hypercomputation is much 
more recent. For some discussion, see Piccini (2015). On Turing, his 
life and his work, see Hodges (2013).

Chapter 15: Maybe it is true—but you can’t prove it!

Hilbert’s Program was one of several ideas proposed in the first part of 
the 20th century to provide mathematics with a secure foundation. 
For discussion of the Program, see Zach (2015). For a much more 
technical introduction to Gödel’s theorems (though not very technical 
as these things go), see Smith (2007). Gödel’s Incompleteness Theorems 
are, arguably, the most spectacular of his results; however, he proved 
several other very important results in the foundations of logic and 
set theory. For a discussion of these, and also on Gödel himself, see 
Dawson (1997). Gödel’s Theorems have been held (rightly or wrongly) 
to have many philosophical consequences. For a discussion of some 
of these, see Raatikainen (2005).

* * *

There is, of course, much more to the history of logic than the above 
details tell. Likewise, there is much to logic itself that is entirely absent 
from this book. We have been skating over the surface. Chapters 14 and 
15 may give the reader some sense of what lies beyond the more basic 
material in the book; but this is little more than a gesture. Logic is 
undoubtedly a technical subject; but the roots of its forest of technical 
ideas and results sink deep into philosophical soil. The great logicians 
of the past have of course been concerned with the forest; however, 
most have done so because of an engagement with the philosophical 
ground. If I have been able to show the reader something of these 
engagements in the chapters of this book, I can ask no more.
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The following glossary contains the terms of art and logical symbols 
that are employed in this book. The entries are not meant to be precise 
definitions, but are meant to convey the main idea for quick reference. 
By and large, the terms and symbols are reasonably standard, though 
there are several other sets of symbols that are also in common use.

algorithm: a procedure that can be carried out in steps where there is 
no guessing or creativity.

antecedent: what follows the ‘if ’ in a conditional.

arithmetic: the branch of mathematics dealing with the natural 
numbers (0, 1, 2 . . . ).

axiom: the basic statements of an axiom system.

axiom system: a collection of basic statements from which others 
can be proved by deducing them.

binary numeral: a numeral such as 10011, which expresses a number 
in terms of powers of 2.

Church–Turing Thesis: The thesis that every algorithm can be 
performed by a computer program.

code number: a number that can be assigned to an entity such as a 
statement, computer program, or proof. Given the code number, 
one can ‘decode’ to find the thing of which it is the code.

completeness: an axiom system is complete if it can prove every true 
sentence expressible in its language (and so, given Excluded Middle, 
either A or ¬A, for any A).

Glossary
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conclusion: the part of an inference for which reasons are given.

conditional: if . . . then. . . .

conditional probability: the probability of some statement, given 
some other information.

conjunction: . . . and. . . .

conjuncts: the two sentences involved in a conjunction.

consequent: what follows the ‘then’ in a conditional.

consistency: an axiom system is consistent if there is no formula, 
A, such that it can prove both A and ¬A.

conversational implicature: an inference, not from what is said, 
but from the fact that it is said.

decision theory: the theory of how to make decisions under conditions 
of uncertain information.

deductive validity: an inference is deductively valid when the 
premisses cannot be true without the conclusion also being true.

(definite) description: a name of the form ‘the thing with such and 
such properties’.

disjunction: either . . . or. . . .

disjuncts: the two sentences involved in a disjunction.

Excluded Middle: the principle that A ∨ ¬A, for every A.

expectation: the result of taking each possible outcome, multiplying 
its value by its probability, and adding all the results together.

fuzzy logic: a kind of logic in which sentences take truth values that 
may be any number between 0 and 1.

Gödel’s ( first) Incompleteness Theorem: given a suitably expressive 
axiomatization of arithmetic, it is either inconsistent or incomplete.

Gödel’s (second) Incompleteness Theorem: given a suitably expressive 
axiomatization of arithmetic, if it is consistent, its consistency cannot 
be proved in the system.

Halting Theorem: Turing’s result that there is no computer program 
which will determine whether an arbitrary program with an arbitrary 
input will halt.

Hilbert’s Program: the program of axiomatizing all mathematics, and 
then proving the axiom system consistent.
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inductive validity: an inference is inductively valid when the 
premisses provide some reasonable ground for the conclusion, though 
not necessarily a conclusive one.

inference: a piece of reasoning, where premisses are given as reasons 
for a conclusion.

inverse probability: the relationship between the conditional 
probability of a given b, and of b given a.

‘is’ of identity: . . . is the same object as. . . .

‘is’ of predication: part of a predicate indicating the application of 
the property expressed by the rest of it.

Leibniz’s Law: if two objects are identical, any property of one is a 
property of the other.

liar paradox: ‘This sentence is false’.

Löb’s Theorem: given a suitably expressive axiom system for 
arithmetic, if it can prove ∃xProv(x, 〈A〉) ⊃ A, it can prove A.

material conditional: not both (. . . and not . . .).

modal operator: a phrase attaching to a sentence, to form another 
sentence expressing the way in which the first sentence is true or false 
(possibly, necessarily, etc.).

modern logic: the logical theories and techniques arising out of the 
revolution in logic around the turn of the 20th century.

modus ponens: the form of inference a, a → c / c.

name: grammatical category for a word that refers to an object (all 
being well).

necessity: it must be the case that. . . .

negation: it is not the case that. . . .

particular quantifier: something is such that. . . .

possibility: it may be the case that. . . .

possible world: a situation associated with another, s, where things 
actually are as they merely might be in s.

predicate: for the grammatically simplest kind of sentence, the 
part which expresses whatever is said about what the sentence 
is about.

premisses: the part of an inference that gives reasons.
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Principle of Indifference: given a number of possibilities, with no 
relevant difference between them, they all have the same probability.

prior probability: the probability of some statement before any 
evidence is taken into account.

probability: a number between 0 and 1, measuring how likely 
something is.

proof: a deduction in an axiom system.

proper name: a name that is not a description.

quantifier: a word or phrase that can be the subject of a sentence, 
but which does not refer to an object (some . . . , all . . . , no . . .)

reductio ad absurdum: a method of proof in which one assumes the 
negation of what one wishes to demonstrate, and shows this to be 
impossible.

reference class: the group of objects from which probability ratios are 
computed.

Russell’s paradox: concerns the set of all sets that are not members of 
themselves.

self-reference: a sentence or other construction which reflects back 
on itself.

situation: a state of affairs, maybe hypothetical, in which premisses 
and conclusions may be true or false.

sorites paradox: a kind of paradox involving repeated applications 
of a vague predicate.

subject: for the grammatically simplest kind of sentence, the part 
which tells you what the sentence is about.

syllogism: a form of inference with two premisses and a conclusion, 
a theory of which was first produced by Aristotle.

tense: past, present, or future.

tense operator: a phrase attaching to a sentence, to form another sentence 
expressing when the first sentence is true or false (past or future).

theorem: the statements that can be proved in an axiom system.

traditional logic: logical theories and techniques that were employed 
before the 20th century.

truth conditions: sentences that spell out how the truth value(s) of a 
sentence depend(s) on the truth values of its components.
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truth function: a logical symbol which, when applied to sentences 
to give a more complex sentence, is such that the truth value of the 
compound is completely determined by the truth value(s) of its 
component(s).

truth table: a diagram depicting truth conditions.

truth value: true (T) or false (F).

universal quantifier: everything is such that. . . .

vagueness: a property of a predicate expressing the idea that small 
changes in an object make no difference to the applicability of the 
predicate.

valid: applies to an inference in which the premisses really do provide 
a reason of some kind for the conclusion.

Symbol Meaning Name

T true (in a situation)
truth values

F false (in a situation)

∨ either . . . or disjunction

& . . . and . . . conjunction

¬ it’s not the case that . . . negation

∃x some object, x, is such that . . . particular 
quantifier

∀x every object, x, is such that . . . universal 
quantifier

ιx the object, x, such that . . . description 
operator

 it must be the case that . . .
modal operators

◊ it may be the case that . . .

→ if . . . then . . . conditional

⊃ not both (. . . and not . . .) material 
conditional

(continued)
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Symbol Meaning Name

P it was the case that . . .

tense operators
F it will be the case that . . .

H it has always been the case that . . .

G it will always be the case that . . .

= . . . is the same object as . . . identity

< . . . is less than  

≤ . . . is less than or equal to . . .  

|. . .| the number which is the truth  
value of . . .

 

Max the greater of . . . and . . .  

Min the lesser of . . . and . . .  

pr the probability that . . .  

pr (. . . |. . .) the probability that . . . given that . . . conditional 
probablity

E the expectation of its being the case 
that . . .

 

V the value of its being the case that . . .  

 . . . is approximately equal to . . .  

〈 A〉 The name (code number) of A code number

Prov(x,y) x is a proof of y proof predicate
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Problems

For each of the main chapters of the book, the following gives an 
exercise whereby you can test your understanding of the contents of 
that chapter. Solutions to the problems can be found in ‘Problem 
Solutions’ section, which follows this section.

Chapter 1 Is the following inference deductively valid, inductively 
valid, or neither? Why? José is Spanish; most Spanish people are 
Catholics; so José is Catholic.

Chapter 2 Symbolize the following inference, and evaluate its 
validity. Either Jones is a knave or he is a fool; but he is certainly a 
knave; so he is not a fool.

Chapter 3 Symbolize the following inference, and evaluate its validity. 
Someone either saw the shooting or heard it; so either someone saw the 
shooting or someone heard it.

Chapter 4 Symbolize the following inference, and evaluate its 
validity. Everyone wanted to win the prize; so the person who won the 
race wanted to win the prize.

Chapter 5 Symbolize the following inference, and evaluate its validity. 
You made an omelette, and you don’t make an omelette and not break 
an egg; so you broke an egg.

Chapter 6 Symbolize the following inference, and evaluate its 
validity. It’s impossible for pigs to fly, and it’s impossible for pigs to 
breathe under water; so it must be the case that pigs neither fly nor 
breathe under water.
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Chapter 7 Symbolize the following inference, and evaluate its validity. 
If you believe in God, then you go to church; but you go to church; so 
you believe in God.

Chapter 8 Symbolize the following inference, and evaluate its validity. 
It has always rained, and it always will rain; so it’s raining now.

Chapter 9 Symbolize the following inference, and evaluate its 
validity. Pat is a woman, and the person who cleaned the windows 
is not a woman; so Pat is not the person who cleaned the windows.

Chapter 10 Symbolize the following inference, and evaluate its 
validity, where the level of acceptability is 0.5. Jenny is clever; and 
either Jenny is not clever or she is beautiful; so Jenny is beautiful.

Chapter 11 The following set of statistics was collected from ten 
people (called 1–10).

If r is a randomly chosen person in this collection, assess the inductive 
validity of the following inference: r is tall and wealthy; so r is happy.

Chapter 12 Suppose there are two illnesses, A and B, that have 
exactly the same observable symptoms. Ninety per cent of those 
who present with the symptoms have illness A; the other 10 per cent 
have illness B. Suppose, also, that there is a pathology test to distinguish 
between A and B. The test gives the correct answer nine times out 
of ten.

 1. What is the probability that the test, when applied to a randomly 
chosen person with the symptoms, will say that they have illness B? 
(Hint: consider a typical sample of 100 people with the symptoms, 
and work out how many the test will say to have illness B.)

 2. What is the probability that someone with the symptoms has 
illness B, given that the test says that they do? (Hint: you have 
to use the first question.)

 1 2 3 4 5 6 7 8 9 10

Tall ✓  ✓  ✓    ✓  

Wealthy ✓  ✓  ✓  ✓ ✓   

Happy ✓ ✓  ✓ ✓   ✓ ✓  
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Chapter 13 You hire a car. If you do not take out insurance, and you 
have an accident, it will cost you $1,500. If you take out insurance, and 
have an accident, it will cost you $300. The insurance costs $90, and 
you estimate that the probability of an accident is 0.05. Assuming that 
the only considerations are financial ones, should you take out the 
insurance?

Chapter 14 What is wrong with the following argument? Of course 
there is an algorithm for determining whether a program with a given 
input terminates. We simply run the program with that input, and see 
what happens. Either it will terminate or it will not. Either way, we 
will have a result.

Chapter 15 Say that an axiom system has the disjunction property 
just if whenever one can prove something of the form A ∨ B, one can 
prove either A or B (or both). Suppose that we have a consistent axiom 
system for arithmetic, all of whose theorems are true, and whose logic 
is that of Chapter 2. Can it have the disjunction property? (Hint: use 
the fact that in this logic the law of excluded middle is valid—that is, 
the logic can prove everything of the form A ∨ ¬ A. Then use Gödel’s 
sentence G.)



137

Problem solutions

The following are solutions to the problems in the previous section, 
‘Problems’. In many cases, especially where an inference is invalid, 
the solutions are not unique: other, equally good, solutions are quite 
possible.

Chapter 1

Is the following inference deductively valid, inductively valid, or 
neither? Why?

José is Spanish; most Spanish people are Catholics; so José is Catholic.

The inference is not deductively valid. It is quite possible that the 
premisses are true, and yet that José is one of the minority of Spanish 
who are not Catholic. Nonetheless, the premisses together give good 
(though not decisive) reason for supposing the conclusion to be true. 
Hence, the inference is inductively valid.

Chapter 2

Symbolize the following inference, and evaluate its validity.

Either Jones is a knave or he is a fool; but he is certainly a knave; so he 
is not a fool.
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Let:

k be ‘Jones is a knave’.
f be ‘Jones is a fool’.

Then the inference is: 

∨ ¬
¬

k f k
f

Testing gives:

On the first row, both premisses are T, and the conclusion is F. Hence, 
the inference is invalid.

Chapter 3

Symbolize the following inference, and evaluate its validity.

Someone either saw the shooting or heard it; so either someone saw the 
shooting or someone heard it.

Let:

xS be ‘x saw the shooting’.
xH be ‘x heard the shooting’.

And let the objects in question be people. Then the inference is:

k f k∨f k ¬f

T T T T F

T F T T T

F T T F F

F F F F T
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( )x xS xH
x xS x xH
∃ ∨

∃ ∨ ∃

This inference is valid. For suppose the premiss is true in some situation. 
Then there is some object, x, in the domain of that situation such that 
xS ∨ xH. By the truth conditions for ∨, either xS or xH. In the first 
case, ∃x xS; in the second, ∃x xH. In either case, ∃x xS ∨ ∃x xH is true 
in the situation.

Chapter 4

Symbolize the following inference, and evaluate its validity.

Everyone wanted to win the prize; so the person who won the race 
wanted to win the prize.

Let:

xP be ‘x wanted to win the prize’.
xR be ‘x won the race’.

And let the objects in question be people. Then the inference is:

∀
ι( )

x xP
x xR P

The inference is invalid. Take a situation, s, in which everyone satisfies 
P, but in which no one satisfies R. (Maybe the race was called off!) 
Then the premiss is true in s. But the description ιx xR does not refer 
to anything. Hence the conclusion is false in s.

Chapter 5

Symbolize the following inference, and evaluate its validity.

You made an omelette, and you don’t make an omelette and not break 
an egg; so you broke an egg.
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Let:

m be ‘You made an omelette’.
b be ‘You broke an egg’.

Then the inference is:

¬( & ¬ )m m b
b

This inference is invalid. For take the following situation:

b: F but not T
m: T and F

Then ¬b is T (and not F); so m & ¬b is T and F (both conjuncts are 
true, and one is false); so ¬(m & ¬b) is T and F. In this situation, both 
premisses are T, and the conclusion is not.

Chapter 6

Symbolize the following inference, and evaluate its validity.

It’s impossible for pigs to fly, and it’s impossible for pigs to breathe 
under water; so it must be the case that pigs neither fly nor breathe 
under water.

Let:

f be ‘Pigs fly’.
b be ‘Pigs breathe under water’.

Then the inference is:

◊ ◊&
( & )

f b
f b�

¬ ¬
¬ ¬

This inference is valid. For suppose the premiss is true in some 
situation, s. Then both conjuncts are true in that situation. Hence, 
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there is no associated situation, s´, where either f is true (first 
conjunct) or b is true (second conjunct). That is, in every associated 
situation, s´, ¬f & ¬b is true. Hence, the conclusion is true in s.

Chapter 7

Symbolize the following inference, and evaluate its validity.

If you believe in God, then you go to church; but you go to church; so 
you believe in God.

Let:

b be ‘You believe in God’.
c be ‘You go to church’.

Then the inference is:

→b c c
b

This inference is invalid. For consider a situation, s, with one associated 
situation, ś , where things are as depicted in the following diagram:

In every situation where b is true, so is c. Hence b → c is true in s. 
Thus, both premisses are true in s, but the conclusion is not.

s
b : F

c : T

s′
b : T

c : T
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Chapter 8

Symbolize the following inference, and evaluate its validity.

It has always rained, and it always will rain; so it’s raining now.

Let:

r be ‘It is raining’.

Then the inference is:

&r r
r

H G

This inference is invalid. For suppose that things are as depicted in the 
following collection of situations:

 

− − −… …3 2 1 0 1 2 3s s s s s s s
r r r ¬r r r r

r is true at all times before s0; so Hr is true in s0. r is true at all times 
after s0; so Gr is true in s0. Hence, Hr&Gr is true in s0, but the 
conclusion is not true in s0.

Chapter 9

Symbolize the following inference, and evaluate its validity.

Pat is a woman, and the person who cleaned the windows is not a 
woman; so Pat is not the person who cleaned the windows.

Let:

p be ‘Pat’.
c be ‘the person who cleaned the windows’.
W be ‘is a woman’.
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Then the inference is:

 

&pW cW
p c

¬
¬ =

This inference is valid. For take any situation where the premiss is 
true. Then in that situation, whatever the name p refers to has the 
property expressed by W, and whatever the name c refers to does not. 
Hence, by Leibniz’s Law, p and c denote different things (assuming 
that nothing can be both true and false!). That is, ¬p = c is true.

Chapter 10

Symbolize the following inference, and evaluate its validity, where the 
level of acceptability is 0.5.

Jenny is clever; and either Jenny is not clever or she is beautiful; so 
Jenny is beautiful.

Let:

c be ‘Jenny is clever’.
b be ‘Jenny is beautiful’.

Then the inference is:
¬ ∨c c b
b

This inference is invalid. For take a situation where the truth values of 
c and b are as follows:

 

: 0.5
: 0.2

c
b

Then the truth value of ¬c in this situation is 0.5 (1 − 0.5), and so the 
truth value of ¬c ∨ b is also 0.5 (Max (0.5, 0.2)). But then both 
premisses are acceptable (≥0.5), and the conclusion is not.
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Chapter 11

The following set of statistics was collected from ten people 
(called 1‒10).

If r is a randomly chosen person in this collection, assess the inductive 
validity of the following inference: r is tall and wealthy; so r is happy.

Let:

t be ‘r is tall’.
w be ‘r is wealthy’.
h be ‘r is happy’.

The inference is valid. For there are three people who are tall and wealthy, 
and two of them are happy. Hence, pr(h | t & w) = 2/3. One of them is 
unhappy, so pr(¬h | t & w) = 1/3. Hence, pr(h | t & w) > pr(¬h | t & w).

Chapter 12

Suppose there are two illnesses, A and B, that have exactly the same 
observable symptoms: 90% of those who present with the symptoms 
have illness A; the other 10% have illness B. Suppose, also, that there 
is a pathology test to distinguish between A and B. The test gives the 
correct answer 9 times out of 10.

 1. What is the probability that the test, when applied to a randomly 
chosen person with the symptoms, will say that they have illness B? 
(Hint: consider a typical sample of 100 people with the symptoms, 
and work out how many the test will say to have illness B.)

 1 2 3 4 5 6 7 8 9 10

Tall ✓  ✓  ✓    ✓  

Wealthy ✓  ✓  ✓  ✓ ✓   

Happy ✓ ✓  ✓ ✓   ✓ ✓  
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 2. What is the probability that someone with the symptoms has 
illness B, given that the test says that they do? (Hint: you have to 
use the first question.)

For Part 1: consider a typical sample of 100 people with the symptoms: 
90 will have illness A, and 10 will have illness B. Since the test gives 
the correct result 9 times out of 10, it will say that 81 of the 90 have A 
(90 × 9/10), and 9 of them have B. Of the 10 with illness B, it will say 
that 9 have illness B and 1 has illness A. Hence a total of 18 will be said 
to have B, and so the probability of a (randomly chosen) person being 
shown to have B is 18/100.

For Part 2: let r be a randomly chosen person with the symptoms, 
and let:

b be ‘r has illness B’.
t be ‘The test says that r has illness B’.

Then:

pr(t|b) = 9/10, since the test is 90% accurate;
pr(b) = 1/10, since one person in every ten has illness B; and
pr(t) = 18/100, by Part 1.

By the relationship between inverse probabilities,

9 1 18
( | ) = ( | ) × ( ) / ( ) = × ÷ = 1 / 2.

10 10 100
pr b t pr t b pr b pr t

Chapter 13

You hire a car. If you do not take out insurance, and you have an 
accident, it will cost you $1,500. If you take out insurance, and have 
an accident, it will cost you $300. The insurance costs $90, and you 
estimate that the probability of an accident is 0.05. Assuming that 
the only considerations are financial ones, should you take out the 
insurance?
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Tabulate the information as follows:

Calculating expectations, we get:

 

( ) = 0.05 ×(–390) 0.95 × (–90) = – 105
(¬ ) = 0.05 × (–1,500) + 0.95 × 0 = – 75

E t
E t

+

Since E(¬t) > E(t), you should not take out insurance.

Chapter 14

What is wrong with the following argument? Of course there is an 
algorithm for determining whether a program with a given input 
terminates. We simply run the program with that input, and see what 
happens. Either it will terminate or it will not. Either way, we will have 
a result.

We can certainly run the program with the given input. If it does 
terminate then it will do so sooner or later, and we will then know 
that it terminates (though we may not know in advance how long it 
will take to do so). If it does not terminate, however, we will never 
know this. However long the computation has been going on, if it 
has not stopped, this may be because it is never going to terminate; 
but it may just be that it is going to terminate, though we haven't 
got there yet. There is no way of knowing which of these situations 
we are in.

Chapter 15

Say that an axiom system has the disjunction property just if whenever 
one can prove something of the form A ∨ B, one can prove either A or B 
(or both). Suppose that we have a consistent axiom system for 

 Have an  
accident

Don’t have an 
accident

Take out insurance (t) 0.05\−390 0.95\−90

Don’t take out insurance (¬t) 0.05\−1,500 0.950
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arithmetic, all of whose theorems are true, and whose logic is that of 
Chapter 2. Can it have the disjunction property? (Hint: use the fact 
that in this logic the law of excluded middle is valid—that is, the logic 
can prove everything of the form A ∨ ¬A. Then use Gödel’s sentence G.)

No. If n is the code of the sentence ¬∃xProv(x, n) then since the logic 
can establish the law of excluded middle, the theory can prove that 
∃xProv(x, n) ∨ ¬∃xProv(x, n). But Gödel’s Theorem shows that 
¬∃xProv(x, n) cannot be proved, though this is true. But then 
∃xProv(x, n) is false; so it cannot be proved either.
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A
acceptability, level of 73–5, 134, 143
algorithm 101–9, 111–12
Alice (in Wonderland and Through 

the Looking Glass) 1–2, 18, 
20–1, 122

antecedent 45, 72, 127
arithmetic 99, 102, 112–14, 116
axiom (systems) 111–17

B
Bayes’ Theorem 125
begging the question 29
binary numeral 103–4

C
calculus ratiocinator 100
change 61–7, 68–9, 124
characteristica universalis 100
Characterization Principle 

(CP) 27–9, 81, 86
Church–Turing Thesis 107–8
code number 104–6, 114, 117
computer program 103, 107–8, 113
conclusion see premisses and 

conclusions
conditional (→) 41–3, 45–52, 72–4, 

120, 123, 128

material (⊃) 46, 129
conjunction (&) 9, 11–12, 29, 33–4, 

70–1, 78–81, 121, 128
consequent 45, 72, 128
conversational implicature 49,  

123, 128

D
decision theory 95, 125, 128
description (definite) (ι) 24–9, 62, 

122, 128
diagonalization 106
disjunction (∨) 8, 10, 13–14, 15–16, 

33–4, 72, 78–80, 120, 128

E
Excluded Middle 128, 135, 147
existence 21–3, 26–7, 29, 61, 65–6, 

84–5, 92, 96, 122
expectation 93–9

F
fatalism:

Aristotle’s argument for 38–9, 
44, 123

‘Master Argument’ for 123
finitary (reasoning) 111
future see past

Index
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G
God:

Argument to Design for the 
existence of 85–90, 125

Cosmological Argument for the 
existence of 21–2, 125

Ontological Argument for the 
existence of 26–7, 28–9, 125

Pascal’s Wager for the belief in 
the existence of 92–3, 95–7

Gödel’s Incompleteness Theorems:
First 116, 117, 126, 128
Second 116–17, 126, 128

grammar 6, 17, 54

H
Halting Theorem 107, 112–13, 126, 

128
Hilbert’s Program 112, 115, 117, 

126, 128
hypercomputation 108, 126

I
identity 61–8, 124
(in)completeness 116–17, 126, 128
(in)consistency 110–11, 114, 115–16
Indifference, Principle of 90, 125, 

130
inference 2–9, 12–17, 20, 34–5, 

40–2, 47–51, 53, 56–7, 63–4, 66, 
73, 76–7, 80–4, 119, 123, 129

interpretation 121, 125
‘is’ (of identity or predication) 62, 

124, 129

L
Leibniz’s Law 63–5, 124, 129
Löb’s Theorem 116–17, 129
logic:

ancient Greek 26, 29–30, 32, 38, 
111, 119–20, 122

fuzzy 70, 128
Indian 120
medieval 42, 120–3, 125
Megarian 120, 123, 124
modal 37–8, 40, 54, 123–4,  

129
modern 9–10, 18, 24–5, 42, 100, 

120–4, 129
Stoic 120, 121, 123
traditional 120, 121, 130

M
Möbius strip 31
model 59, 121
modus ponens 42, 43, 45, 47, 70, 

74, 129

N
name 18–22, 25, 28, 30, 62–3, 

121–2, 129
empty 28
proper 25, 130

necessity operator (□) 37–8, 40, 
42–4, 129

negation (¬) 8–10, 12–16, 33–5
combined with modal 

operators 37–8
nothing(ness) 21–3, 28–9

O
object 18–23, 24–6, 28–9, 32, 

61–3, 69
operator:

modal 37–8, 40, 54, 123–4,  
129

tense 54–9, 65, 130

P
paradoxes:

liar 32, 36, 69, 115, 122, 129
Russell’s 32–3, 110, 130
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of self-reference 30–1, 116, 122
sorites 69, 73–4, 124, 130

past and future 53–60, 65, 123–4
possibility operator (□) 37–44
possible world 40, 47, 123, 129
predicate 17–18, 24, 28–9, 62, 69, 

73, 129
premiss(es) and conclusion 2–6, 

7–8, 12–14, 26, 34–5, 41, 47–51, 
63–6, 70, 73–4, 76, 81, 129

probability 76–83, 93–4, 124–5, 
130

conditional (CP) 80–1, 85, 94, 
128

frequency interpretation of 125
inverse (Inv) 84–91, 125, 129
prior 87, 89, 94, 130

property 26–8, 62–7, 129

Q
quantifier 18–22, 121–2, 130

particular (existential) (∃) 19, 
105, 122, 129

universal (∀) 20, 131

R
reasoning 1–6, 92–3, 95, 111, 115

practical 92
reductio ad absurdum 105, 112, 

115, 130
reference class 82–3, 130

S
self-reference 30–6, 106, 113, 116, 

122–3, 130
Sherlock Holmes 4, 76–7, 81–2

Ship of Theseus 124
situation 5–6, 8, 12, 18–20, 33–6, 

40–4, 46–52, 56–60, 90, 121, 
130

structure 84–5, 121
subject 17–20, 24, 29, 30, 130
syllogism 119, 130

T
tense 54–9, 65, 130

compound 54, 55–6, 58
theorems 111, 130
time 53–60, 65, 108

flow of 56, 59
McTaggart’s argument against 

the reality of 53–6, 58–9, 124
truth:

conditions 9, 10–11, 33, 130
and context 14, 73
degrees of 70, 72, 80
and falsity 3, 9–15, 27–9, 30–8, 

46–7, 58, 70, 78, 85, 117, 122
functions 15, 72, 80, 121, 131
tables 9–15, 46, 131
values 9–16, 32–41, 46, 70–5, 

131
see also situation

V
vagueness 68–75, 124, 131

higher-order 75
validity 3–7, 34, 56, 73, 83, 121

deductive 3–5, 49, 76, 121, 128
inductive 4, 76–7, 81–3, 121, 124, 

129
vacuous 14

value (of a state of affairs) 93–9
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